화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.86, 100-112, June, 2020
Study on the synthesis and properties of hierarchically structured electrospun/vapour-grown carbon nanofibres nanocomposites
E-mail:
Herein, we present an extensive analysis of the effect of the initial concentration of iron acetylacetonate (III) (Fe(Acac)3), serving as the catalyst for the growth of carbon nanostructures from the gas phase, on the properties and processes occurring during the synthesis of hierarchically structured electrospun/vapour-grown carbon nanofibres nanocomposites. The examined materials contained from 0 to 4.5% of Fe(Acac)3 and were analysed at various stages of the synthesis. The conducted study revealed empirical formulas correlating the Fe(Acac)3 content with the viscosity of the precursor solutions and the resulting diameters of electrospun carbon nanofibres (eCNF). The concentration of the catalyst exerted a strong impact on the morphology and density of nanoprotrusions on the surface of eCNF. The presence of the grown nanostructures caused an increase in the degree of structural ordering of the nanocomposites. Obtained results suggest also the catalytic effect of Fe(Acac)3 on the cyclisation/oxidation of polyacrylonitrile and proved the hypothesis that the presence of this compound significantly affects the course of the thermal conversion of polyacrylonitrile into the carbon. Evaluation of the wettability revealed the superhydrophobic-superoleophilic character of the nanocomposites and showed that contact angles can be easily controlled by the appropriate selection of initial concentration of Fe(Acac)3.
  1. Li S, Cui Z, Li D, Yue G, Liu J, Ding H, Gao s, Zhao Y, Wang N, Zhao Y, Compos. Commun., 13, 1 (2019)
  2. Zander NE, Polymers, 5(1), 19 (2013)
  3. Hou HQ, Reneker DH, Adv. Mater., 16(1), 69 (2004)
  4. Lai C, Guo Q, Wu XF, Reneker DH, Hou H, Nanotechnology, 19(19) (2008)
  5. El Mel AA, Achour A, Xu W, Choi CH, Gautron E, Angleraud B, Granier A, Le Brizoual L, Djouadi MA, Tessier PY, Nanotechnology, 22(43) (2011)
  6. Teo KBK, Singh C, Chhowalla M, Milne WI, Encyclopedia of Nanoscience and Nanotechnology, Vol. 1, American Scientific Publishers, CA, USA, pp.665-686 2004.
  7. Zhou J, Chen J, Han S, Zhao H, Bai J, Yang Z, Mu X, Liu Y, Bian D, Sun G, Zhang Z, Pan X, Xie E, Carbon N. Y., 111, 502 (2017)
  8. Zhou Z, Wu XF, Fong H, Appl. Phys. Lett., 100(2), 3 (2012)
  9. Kshetri T, Thanh TD, Singh SB, Kim NH, Lee JH, Chem. Eng. J., 345, 39 (2018)
  10. Qiu Y, Li G, Hou Y, Pan Z, Li H, Li W, Liu M, Ye F, Yang X, Zhang Y, Chem. Mater., 27(4), 1194 (2015)
  11. Wang T, Song DF, Zhao H, Chen JY, Zhao CH, Chen LL, Chen WJ, Zhou JY, Xie EQ, J. Power Sources, 274, 709 (2015)
  12. Meng Q, Wu H, Zhao Z, Araby S, Lu S, Ma J, Compos. A Appl. Sci. Manuf., 92, 42 (2017)
  13. Liu Y, Luo J, Helleu C, Behr M, Ba H, Romero T, Hebraud A, Schlatter G, Ersen O, Su DS, Pham-Huu C, J. Mater. Chem. A, 5(5), 2151 (2017)
  14. Guo QH, Zhao D, Liu SW, Chen SL, Hanif M, Hou HQ, Electrochim. Acta, 138, 318 (2014)
  15. Canado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhaes-Paniago R, Pimenta MA, Appl. Phys. Lett., 88(16), 1 (2006)
  16. Du JM, Shintay S, Zhang XW, J. Polym. Sci. B: Polym. Phys., 46(15), 1611 (2008)
  17. Tiwari SK, Venkatraman SS, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 32(5), 1037 (2012)
  18. Wang C, Chien HS, Hsu CH, Wang YC, Wang CT, Lu HA, Macromolecules, 40(22), 7973 (2007)
  19. McKee MG, Wilkes GL, Colby RH, Long TE, Macromolecules, 37(5), 1760 (2004)
  20. Dziubinski M, Kiljanski T, Sek J, Podstawy Teoretyczne i Metody Pomiarowe reologii, Monografie Politechniki Lodzkiej, Lodz, 2014.
  21. Phadke MA, Musale DA, Kulkarni SS, Karode SK, Polym. Sci. Part B: Polym. Phys., 43(15), 2061 (2005)
  22. Sawitri A, Munir M, Miftahul, Edikresnha D, Sandi A, Fauzi A, Rajak A, Natalia D, Khairurrijal K, Mater. Res. Express, 5(5) (2018)
  23. Wei YY, Eres G, Merkulov VI, Lowndes DH, Appl. Phys. Lett., 78(10), 1394 (2001)
  24. Gao Y, Pandey GP, Turner J, Westgate CR, Sammakia B, Nanoscale Res. Lett., 7, 2 (2012)
  25. Farsani RE, Raissi S, Shokuhfar A, Sedghi A, Int. J. Mech. Mechatronics Eng., 3(2), 161 (2009)
  26. Benko A, Nocun M, Gajewska M, Blazewicz M, Polym. Degrad. Stabil., 161, 260 (2019)
  27. Zhang T, Huang DQ, Yang Y, Kang FY, Gu JL, Polymer, 53(26), 6000 (2012)
  28. Munawar A, Durrani AI, Durrani AK, J. Fac. Eng. Technol., 22(1) (2015)
  29. Ren Y, Liu S, Duan B, Xu Y, Li Z, Huang Y, Hu L, Zhu J, Dai S, J. Alloy. Compd., 705, 205 (2017)
  30. Tatariants M, Yousef S, Sidaraviciute R, Denafas G, Bendikiene R, RSC Adv., 7, 37729 (2017)
  31. Molnar K, Szolnoki B, Toldy A, Vas L, Mihaly, J. Therm. Anal. Calorim., 117, 1123 (2014)
  32. Stodolak-Zych E, Benko A, Szatkowski P, Dlugon E, Nocun M, Paluszkiewicz C, Blazewicz M, J. Mol. Struct., 1126, 94 (2016)
  33. Heydari M, Mohammadi N, Iran. Polym. J., 27(6), 395 (2018)
  34. Malega F, Indrayana IPT, Suharyadi E, Ilm J, Pendidik. Fis. Al-Biruni, 7(2), 129 (2018)
  35. Yu DG, Lu P, Branford-White C, Yang JH, Wang X, Nanotechnology, 22(43), 1 (2011)
  36. Dakhel AA, Ali-Mohamed AY, J. Phys, Chem. Solids, 68(2), 162 (2007)
  37. MinJoong K, Do-Hwan N, Hee-Young P, ChoRong K, KwangSup E, SungJong Y, JongHyun J, Hyoung-Juhn K, EunAe C, HyukSang K, J. Mater, Chem. A, 3(27), 14284 (2015)
  38. Wu M, Wang Q, Li K, Wu Y, Liu H, Polym. Degrad. Stabil., 97(8), 1511 (2012)
  39. Crane RA, Scott TB, J. Nanotechnol., 2013(5), 1 (2013)
  40. Oya A, Marsh H, J. Mater. Sci., 17(2), 309 (1982)
  41. Ferrari A, Robertson J, Phys. Rev. B Condens. Matter Mater. Phys., 61(20), 14095 (2000)
  42. Li Z, Xu Y, Cao B, Qi L, He S, Wang C, Zhang J, Wang J, Xu K, Superlattices Microstruct., 99, 125 (2016)
  43. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A, Phys. Rep., 409(2), 47 (2005)
  44. Endo M, Kim C, Karaki T, Kasai T, Matthews M, Brown SD, Dresselhaus M, Tamaki T, Nishimura Y, Carbon N. Y., 36(11), 1633 (1998)
  45. Jiang GZ, Pickering SJ, J. Mater. Sci., 51(4), 1949 (2016)
  46. Heller EJ, Yang Y, Kocia L, Chen W, Fang S, Borunda M, Kaxiras E, ACS Nano, 10(2), 2803 (2016)
  47. Haham H, Grinblat J, Sougrati M, Stievano L, Margel S, Materials, 8(7), 4593 (2015)
  48. Xue Y, Liu J, Liang J, Polym. Degrad. Stabil., 98(1), 219 (2013)
  49. Karacan I, Erdogan G, Fibers Polym., 13, 295 (2012)
  50. Wang YX, Wang CG, Wu JW, Jing M, J. Appl. Polym. Sci., 106(3), 1787 (2007)
  51. Zhang X, Wang X, Liu X, Lv C, Wang Y, Zheng G, Liu H, Liu C, Guo Z, Shen C, ACS Sustain. Chem. Eng., 6(10), 12580 (2018)
  52. Wang X, Pan Y, Yuan H, Su M, Shao C, Liu C, Guo Z, Shen C, Liu X, Chin. Chem. Lett., 31(2), 365 (2019)
  53. Milne AJB, Amirfazli A, Adv. Colloid Interface Sci., 170(1-2), 48 (2012)
  54. Gao N, Yan YY, Chen XY, Mee DJ, Mater. Lett., 65(19-20), 2902 (2011)
  55. Li S, Huang J, Chen Z, Chen G, Lai Y, J. Mater. Chem. A, 5, 31 (2017)
  56. Drelich J, Chibowski E, Langmuir, 26(24), 18621 (2010)
  57. Kim HI, Han W, Choi WK, Park SJ, An KH, Kim BJ, Carbon Lett., 20(1), 39 (2016)