화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.3, 397-407, May, 2020
아미노기가 도입된 셀룰로오스 나노 결정을 충전제로 사용한 친환경 폴리우레탄 나노복합체 제조 및 물성에 대한 연구
Preparation and Properties of Eco-friendly Polyurethane Nanocomposites Using Cellulose Nanocrystals with Amino Group as Fillers
E-mail:
초록
본 연구에서는 바이오 폴리올과 석유계 폴리올을 질량비 3:7 비율로 혼합한 폴리올을 4,4'-methylenebis (phenyl isocyanate)(MDI)와 반응시켜 친환경 폴리우레탄 나노복합체를 제조하는 연구를 수행하였다. 또한 3-amino-propyltriethoxysilane(APS) 실란 커플링제를 사용하여, 셀룰로오스 나노 결정(cellulose nanocrystal, CNC) 표면에 -NH2기를 도입하여 충전제로 사용하였다. 표면 개질된 CNC 충전제가 폴리우레탄 나노복합체의 물성에 미치는 영향을 열 중량 분석기(TGA), 만능재료시험기(UTM) 및 동적기계분석기(DMA)를 사용하여 체계적으로 분석하였다. CNC 표면에 도입된 -NH2기는 MDI의 -NCO기와 계면에서 우레아 결합을 형성하여 순수 CNC를 충전제로 사용한 폴리우레탄 나노복합체보다 인장강도와 탄성률이 더 많이 증가되는 것을 확인하였다.
In this study, a polyol mixture of bio-polyol and petroleum-polyol in a mass ratio of 3:7 was reacted with 4,4'-methylenebis(phenyl isocyanate) (MDI) to prepare an eco-friendly polyurethane (PU) nanocomposite. Also, using 3-aminopropyltriethoxysilane (APS) silane coupling agent, -NH2 group was grafted onto the cellulose nanocrystals (CNCs) surfaces, which was used as fillers. We studied the effects of surface modified CNC fillers on the mechanical properties of PU nanocomposites using thermogravimetric analysis (TGA), universal testing machine (UTM) and dynamic mechanical analyzer (DMA). The -NH2 groups grafted on the CNC surface can form urea bonds with -NCO groups of MDI at the interface, which increased the tensile strength and modulus of PU nanocomposites more than those of the pristine CNC as fillers.
  1. Jo YJ, Choi SH, Lee EY, Appl. Chem. Eng., 24(6), 579 (2013)
  2. Kim CB, Seo WJ, Kwon OD, Kim SB, Appl. Chem. Eng., 22(5), 540 (2011)
  3. Kwon OJ, Yang SR, Kim DH, Park JS, J. Appl. Polym. Sci., 103(3), 1544 (2007)
  4. Saxena RC, Adhikari DK, Goyal HB, Renew. Sust. Energ. Rev., 13, 167 (2009)
  5. Kim IT, Joo SH, Oh JS, J. Adhes. Intf., 20, 116 (2019)
  6. Kim BJ, Kim SY, Cho JK, Lee SH, Kim HJ, J. Adhes. Interf., 11, 76 (2010)
  7. Jang JH, Kwon GJ, Kim JH, Kwon SM, Yoon SL, Kim NH, J. Korean Wood. Sci. Tech., 40, 156 (2012)
  8. Peng BL, Dhar N, Liu HL, Tam KC, Can. J. Chem. Eng., 89(5), 1191 (2011)
  9. Khoshkava V, Kamal MR, Biomacromolecules, 14, 3155 (2013)
  10. Nam YS, Yu JK, Park GW, Kim HJ, Kim DG, Kim MG, Hyun K, Polym. Korea, 43(4), 567 (2019)
  11. Lee S, Ha K, Polym. Korea, 37(6), 777 (2013)
  12. Luo N, Wang DN, Ying SK, Macromolecules, 30(15), 4405 (1997)
  13. Deng C, Cui Y, Zhao T, Tan M, Huang H, Guo M, RSC Adv., 4, 24095 (2014)
  14. Asplund JOB, Bowden T, Mathisen T, Hilborn J, Macromolecules, 39(13), 4380 (2006)
  15. Lee YN, Lee JH, Park SS, Lim KH, Ha KR, Polym. Korea, 43(4), 652 (2019)
  16. Khanjanzadeh H, Behrooz R, Bahramifar N, GindiAltmutter W, Bacher M, Edler M, Griesser T, Int. J. Biol. Macromol., 106, 1288 (2018)
  17. Smith BC, Spectroscopy, 44, 30 (2019)
  18. Colthup NB, Daly LH, Wiberley SE, Introduction to Infrared and Raman Spectroscopy, Academic Press, New YorkLondon, 1975.
  19. Kargarzadeh H, Sheltami RM, Ahmad I, Abdullah I, Dufresne A, Polymer, 56, 346 (2015)
  20. Shin J, NICE, 34, 500 (2016)
  21. Luo JZ, Lannutti J, Seghi R, J. Adhes. Sci. Technol., 15(3), 267 (2001)
  22. Salon MCB, Gerbaud G, Abdelmolleh M, Bruzzese C, Boufi S, Belgacem MN, Magn. Reson. Chem., 45, 473 (2007)
  23. Rachini A, Le Troedec M, Peyratout C, Smith A, J. Appl. Polym. Sci., 123(1), 601 (2012)
  24. Rafiee Z, Keshavarz V, Prog. Org. Coat., 86, 190 (2015)
  25. Wong CS, Badri KH, Mater. Sci. Appl., 3, 78 (2012)
  26. Cho IS, Kang SG, Kim SB, J. Korean Inst. Gas, 12, 38 (2008)
  27. Jena KK, Chattopadhyay DK, Raju KVSN, Eur. Polym. J., 43, 1825 (2007)
  28. Knudsen OO, Forsgren A, Corrosion Control Through Organic Coatings, CRC Press, Boca raton, p 20 (2017).
  29. Choi MJ, Jeong BY, Cheon JM, Park KB, Chun JH, J. Adhes. Interf., 18, 8 (2017)
  30. Koga H, Kitaoka T, Isogai A, J. Mater. Chem., 21, 9356 (2011)
  31. Wu QJ, Henriksson M, Liu X, Berglund LA, Biomacromolecules, 8(12), 3687 (2007)
  32. Panaitescu DM, Frone AN, Ghiurea M, Spataru CI, Radocivi C, Iorga MD, Advances in Composite Materials: Ecodesign and Analysis, Intech, Croatia, 2011.
  33. Asempour F, Emadzadeh D, Matsuura T, Kruczek B, Desalination, 439, 179 (2018)
  34. Guo J, Catchmark JM, Carbohydr. Polym., 87, 1026 (2012)
  35. Lee HJ, Kim SK, Kang YH, Kim WS, J. Korean Soc. Adv. Comp. Struc., 8, 49 (2017)
  36. Auad ML, Contos VS, Nutt S, Aranguren MI, Marcovich ME, Polym. Int., 57, 651 (2008)
  37. Pei AH, Malho JM, Ruokolainen J, Zhou Q, Berglund LA, Macromolecules, 44(11), 4422 (2011)
  38. Mohan D, Sajab MS, Kaco H, Bakarudin SB, Noor AM, Nanomaterials, 9, 1726 (2019)
  39. Lyu J, Xu K, Zhang N, Lu C, Zhang Q, Yu L, Feng F, Li X, Molecules, 24, 1667 (2019)
  40. Dodiuk H, Goodman SH, Handbook of thermoset plastics, Elsevier, San Diego, 2013.