화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.5, 223-230, May, 2020
습식분쇄에 의한 입자크기 변화에 따른 분쇄입자의 종횡비 거동
Aspect Ratio Behavior of Grinding Particles with Variation of Particle Size by Wet Grinding
E-mail:
As a case study on aspect ratio behavior, Kaolin, zeolite, TiO2, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 mm media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ~6 μm are shifted to submicron size, D50 ~0.6 μm after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.
  1. Fuji M, Hyomen Kagaku, 24, 625 (2003)
  2. Heim A, Olejik TP, Pawlak A, Physicochemical Problems Miner. Process., 39, 189 (2005)
  3. Lim IJ, Somasundaran P, Powder Technol., 6, 171 (1972)
  4. Wiersema PH, Loeb AL, Overbeek JTG, J. Colloid Interface Sci., 22, 78 (1966)
  5. Kapur PC, Fuerstenau DW, Int. J. Miner. Process., 20, 45 (1987)
  6. Suryanarayana C, Procedia Mater. Sci., 46, 1 (2001)
  7. Deniz V, Onur T, Int. J. Miner. Process., 67(1-4), 71 (2002)
  8. Dittmann J, Koos E, Willenbacher N, J. Am. Ceram. Soc., 96(2), 391 (2013)
  9. Chaudhari A, Soh ZY, Wang H, Kumar AS, Int. J. Mach. Tool. Manufact., 133, 47 (2018)
  10. Suyanarayana C, Prog. Mater. Sci., 46, 1 (2001)
  11. Choi JS, Kr Patent, KR100928044B1 (2009).
  12. Choi JS, Jeong DY, Shin DW, Bae WT, J. Korean Ceram. Soc., 50, 238 (2013)
  13. Landau LD, Lifshitz EM, Electrodynamics of Continuous Media., p.368, Pergamon, Oxford, England (1960).
  14. Yildirim K, Austin LG, Wear, 218, 15 (1998)
  15. Nomura S, Tanaka T, Powder Technol., 58, 117 (1989)
  16. Eskin D, Voropayev S, Min. Eng., 14, 1161 (2001)
  17. Malghan SG, Minor DB, Lum LSH, Powder Technol., 67, 201 (1991)
  18. Jankovic A, Valery W, Davis E, Miner. Eng., 17(11-12), 1075 (2004)
  19. Rao JB, Catherin GJ, Murthy IN, Rao DV, Raju BN, Int. J. Eng. Sci. Technol., 3, 82 (2011)
  20. Austin LG, Shoji K, Luckie PT, Powder Technol., 14, 71 (1976)
  21. Lee JK, Mechanical Grinding of Inorganic Raw Materials (in Korean), p.361, Bando Press, Seoul (1990).
  22. Frances C, Laguerie C, Powder Technol., 99(2), 147 (1998)
  23. Takacs L, McHenry JS, Mater. Sci., 41, 5246 (2006)
  24. Herbst JA, Fuerstenau DW, Trans. AIME Met. Pet. Eng., 252, 169 (1972)
  25. Lee HL, Jung CJ, Park KC, Unit Operation (in Korean), p. 162, Bando Press, Seoul (1983).
  26. Cleary PW, Int. J. Miner. Process., 63(2), 79 (2001)
  27. Vermeulen LA, Powder Technol., 46, 281 (1986)
  28. Fecht HJ, Hellstern E, Fu Z, Johnson WL, Sym. Int. Sci. Eng., 21, 2333 (1990)
  29. Hosokawa M, Nanoparticle Technology Handbook, ed. 8, Elsevier, Amsterdam, Netherlands (2007).