화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.87, 60-67, July, 2020
Effect of culture condition on cell viability and gel contraction in a skin chip
E-mail:
The importance of physiologically realistic in vitro skin models in development of cosmetics and drugs for skin disorders have been well recognized, but current in vitro skin models carry several limitations in recapitulating the physiology of the human skin. Recently, in vitro skin models in a microfluidic platform have been proposed with improved physiological relevance. Survival and differentiation of skin tissue construct requires accurate refinement of cell culture environment, which can be different for static and dynamic culture conditions. In this study, we studied the effect of different culture conditions on the skin construct in a microfluidic skin chip. Our observation suggests that different seeding cell concentrations, thickness of the collagen matrix, volume of cell culture media and the frequency of media exchange affects the cell viability, extent of collagen gel contraction, and adherence of keratinocytes to the gel matrix. Our study provides valuable information about optimization of cell culture conditions in a microfluidic skin chip.
  1. Akhtar A, Camb Q Healthc Ethic, 24, 407 (2015)
  2. Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, et al., Arch Toxicol., 85, 367 (2011)
  3. Kandarova H, Liebsch M, Spielmann H, Genschow E, Schmidt E, Traue D, et al., Toxicol. Vitro, 20, 547 (2006)
  4. Netzlaff F, Lehr CM, Wertz PW, Schaefer UF, Eur. J. Pharm. Biopharm., 60, 167 (2005)
  5. Yamamoto K, Sokabe T, Watabe T, Miyazono K, Yamashita JK, Obi S, Ohura N, Matsushita A, Kamiya A, Ando J, Am J Physiol Heart Circ Physiol 288, H1915 (2005).
  6. Witte RP, Kao WJ, Biomaterials, 26, 3673 (2005)
  7. Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland S, Adv. Drug Deliv. Rev., 63, 352 (2011)
  8. O’Neill AT, Monteiro-Riviere NA, Walker GM, Cytotechnology, 56, 197 (2008)
  9. Abaci HE, Gledhill K, Guo Z, Christiano AM, Shuler ML, Lab Chip, 15, 882 (2015)
  10. Lee S, Jin SP, Kim YK, Sung GY, Chung JH, Sung JH, Biomed Microdevices, 19, 22 (2017)
  11. Schimek K, Busek M, Brincker S, Groth B, Hoffmann S, Lauster R, Lindner G, Lorenz A, Menzel U, Sonntag F, Walles H, Marx U, Horland R, Lab Chip, 13, 3588 (2013)
  12. Wufuer M, Lee G, Hur W, Jeon B, Kim BJ, Choi TH, Lee S, Sci Rep, 6, 37471 (2016)
  13. Ramadan Q, Ting FC, Lab Chip, 16, 1899 (2016)
  14. Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP, Hubner J, et al., Lab Chip, 15, 2688 (2015)
  15. Sumpio BE, Riley JR, Dardik A, Int. J. Biochem. Cell Biol., 34, 1508 (2002)
  16. Helm CLE, Zisch A, Swartz MA, Biotechnol. Bioeng., 96(1), 167 (2007)
  17. Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, Yoo SS, Dai G, Karande P, Tissue Eng C Methods, 20, 473 (2014)
  18. Nayak S, Dey S, Kundu SC, PLoS One, 8, e74779 (2013)
  19. Schimek K, Hsu HH, Boehme M, Kornet JJ, Marx U, Lauster R, Portner R, Lindner G, Bioengineering, (Basel) 5 (2018)
  20. Halim AS, Khoo TL, Yussof SJM, Indian J Plast Surg, 43, S23 (2010)
  21. Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, San Antonio JD, J. Biol. Chem., 277, 4223 (2002)