Journal of Industrial and Engineering Chemistry, Vol.88, 106-110, August, 2020
Synthesis and characterization of In1-xGaxP@ZnS alloy core-shell type colloidal quantum dots
E-mail:,
We report synthesis of colloidal quantum dots (CQDs), indium gallium phosphide with zinc sulphide shell (In1-xGaxP@ZnS) by a hot injection method and investigate effects of In/Ga ratio on the optical properties of the obtained CQDs. The bandgap of CQDs (1.34-3.54 eV) is controlled by the In/Ga ratio without the quantum confinement effect. The photoluminescence (PL) quantum yield is also dependent on the In/Ga ratio, and temperature dependent PL results show that the randomness of crystal lattice is the most influential parameter. These results show that the In1-xGaxP alloy CQDs can be useful for absorbing the whole range of visible light. In addition, this article can provide background knowledge regarding effect of core metal composition on the optical properties of produced CQDs.
- Santra S, Yang HS, Holloway PH, Stanley JT, Mericle RA, J. Am. Chem. Soc., 127(6), 1656 (2005)
- Mashford BS, Stevenson M, Popovic Z, Hamilton C, Zhou ZQ, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S, Kazlas PT, Nat. Photon., 7, 407 (2013)
- Lee S, Lee K, Kim WD, Lee S, Shin DJ, Lee DC, J. Phys. Chem. C, 118, 23627 (2014)
- Ning Z, Voznyy O, Pan J, Hoogland S, Adinolfi V, et al., Nature Mater. (2014).
- Won YH, Cho O, Kim T, Chung DY, Kim T, Chung H, Jang H, Lee J, Kim D, Jang E, Nature, 575(7784), 634 (2019)
- Bang JH, Kamat PV, ACS Nano, 3, 1467 (2009)
- Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L, et al., Nature Mater., 10, 765 (2011)
- Derfus AM, Chan WCW, Bhatia SN, Nano Lett., 4, 11 (2004)
- Virieux H, Le Troedec M, Cros-Gagneux A, Ojo WS, Delpech F, Nayral C, Martinez H, Chaudret B, J. Am. Chem. Soc., 134(48), 19701 (2012)
- Zimmer JP, Kim SW, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG, J. Am. Ceram. Soc., 128, 2526 (2006)
- Li L, Daou TJ, Texier I, Tran TKC, Nguyen QL, Reiss P, Chem. Mater., 21, 2422 (2009)
- Koh S, Lee H, Lee T, Park K, Kim WJ, Lee DC, J. Chem. Phys., 151, 144704 (2019)
- Zhang H, Ma X, Lin Q, Zeng Z, Wang H, Li LS, Shen H, Jia Y, Du Z, J. Phys. Chem. Lett., 11, 960 (2020)
- Yang XY, Zhao DW, Leck KS, Tan ST, Tang YX, Zhao JL, Demir HV, Sun XW, Adv. Mater., 24(30), 4180 (2012)
- Kim S, Lee K, Kim S, Kwon OP, Heo JH, Im SH, Jeong S, Lee DC, Kim SW, RSC Adv., 5, 2466 (2015)
- Zhang H, Hu N, Zeng Z, Lin Q, Zhang F, Tang A, Jia Y, Li LS, Shen H, Teng F, Du Z, Adv. Opt. Mater., 1801602 (2019).
- Joshi A, Manasreh MO, Davis EA, Weaver BD, Appl. Phys. Lett., 89, 111907 (2006)
- Micic OI, Sprague JR, Curtis CJ, Jones KM, Machol JL, Nozik AJ, Giessen H, Fluegel B, Mohs G, Peyghambarian N, J. Phys. Chem.-Us, 99, 7754 (1995)
- Kornienko N, Whitmore DD, Yu Y, Leone SR, Yang PD, ACS Nano, 9, 3951 (2015)
- Virieux H, Le Troedec M, Cros-Gagneux A, Ojo WS, Delpech F, Nayral C, Martinez H, Chaudret B, J. Am. Chem. Soc., 134(48), 19701 (2012)
- Waldrop JR, Grant RW, Kraut EA, J. Vac. Sci. Technol. B, 11, 1617 (1993)
- Guittet MJ, Crocombette JP, Gautier-Soyer M, Phys. Rev. B, 63, 125117 (2001)
- Ma X, Min J, Zeng Z, Garoufalis CS, Baskoutas S, Jia Y, Du Z, Phys. Rev. B, 100, 245404 (2019)
- Kagan CR, Murray CB, Bawendi MG, Phys. Rev. B, 54, 8633 (1996)
- Wu KW, Bera A, Ma C, Du YM, Yang Y, Li L, Wu T, Phys. Chem. Chem. Phys., 16, 22476 (2014)
- Reshchikov MA, J. Appl. Phys., 115, 012010 (2014)