화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.88, 278-284, August, 2020
Thermolytic dehydrogenation of cotton-structured SiO2-Ammonia borane nanocomposite
E-mail:,
Thermal dehydrogenation of ammonia borane (AB) is one of the simplest methods to generate pure hydrogen for hydrogen power-driven proton exchange membrane fuel cells. For AB thermolysis, it is imperative to develop a highly effective catalyst to initiate the dehydrogenation reaction at a low temperature and eventually achieve enhanced hydrogen production. Here, we introduce a specifically designed AB-SiO2 nanocomposite, which is prepared by simple mixing and pressing processes. Hydrogen evolution during thermolysis of the cotton-structured AB-SiO2 composite is initiated at around 80 °C, and the maximum H2 yield is determined to be 11.2 wt% (2.32 mole equivalents of H2). The yield is found to depend on the size and size distribution of the catalytic SiO2 particles in the hydrogen fuel composite.
  1. Wang K, Li Y, Li J, Zhang G, Appl. Catal. B: Environ., 263, 117730 (2020)
  2. Jiang LS, Wang K, Wu XY, Zhang GK, Yin S, Acs Appl Mater Inter, 11, 26898 (2019)
  3. Jiang LS, Li J, Wang K, Zhang GK, Li Y, Wu XY, Appl. Catal. B: Environ., 260, 118181 (2020)
  4. Yoo GY, Azmi R, Kim C, Kim W, Min BK, Jang SY, Do YR, Acs Nano, 13, 10129 (2019)
  5. Du J, Liu L, Yu YF, Hu ZP, Zhang Y, Liu BB, Chen AB, Chemsuschem, 12, 303 (2019)
  6. Meng X, Zhang QY, Zhang SP, He Z, Sensors-Basel, 19 (2019)
  7. Belgibayeva A, Taniguchi I, Electrochim. Acta, 328 (2019)
  8. Smeets V, Boissiere C, Sanchez C, Gaigneaux EM, Peeters E, Sels BF, Dusselier M, Debecker DP, Chem. Mater., 31, 1610 (2019)
  9. Thyssen VV, Assaf EM, Fuel, 254 (2019)
  10. Fiordaliso EM, Sharafutdinov I, Carvalho HWP, Kehres J, Grunwaldt JD, Chorkendorff I, Damsgaard CD, Sci Technol Adv Mat, 20, 521 (2019)
  11. Yeletsky PM, Reina TR, Bulavchenko OA, Saraev AA, Gerasimov EY, Zaikina OO, Bermudez JM, Arcelus-Arrillaga P, Yakovlev VA, Millan M, Catal. Today, 329, 197 (2019)
  12. Song YY, Du LY, Wang WW, Jia CJ, Langmuir, 35(26), 8658 (2019)
  13. Shi DC, Yang QF, Peterson C, Lamic-Humblot AF, Girardon JS, Griboval-Constant A, Stievano L, Sougrati MT, Briois V, Bagot PAJ, Wojcieszak R, Paul S, Marceau E, Catal. Today, 334, 162 (2019)
  14. Tang C, Qu FL, Asiri AM, Luo YL, Sun XP, Inorg Chem Front, 4, 659 (2017)
  15. Li K, Ma M, Xie LS, Yao YD, Kong RM, Du G, Asiri AM, Sun XP, Int. J. Hydrog. Energy, 42(30), 19028 (2017)
  16. Wu H, Wu M, Wang B, Yong X, Liu Y, Li B, LB, Lu S, J. Energy Chem., 48, 43 (2020)
  17. Wei ZH, Liu Y, Peng ZK, Song HQ, Liu ZY, Liu BZ, Li BJ, Yang B, Lu SY, Acs Sustain Chem Eng, 7, 7014 (2019)
  18. Tang C, Zhang R, Lu WB, He LB, Jiang X, Asiri AM, Sun XP, Adv. Mater., 29 (2017)
  19. Halseid R, Vie PJS, Tunold R, J. Power Sources, 154(2), 343 (2006)
  20. Hajduk S, Dasireddy VDBC, Likozar B, Drazic G, Orel ZC, Appl. Catal. B: Environ., 211, 57 (2017)
  21. Dasireddy VDBC, Likozar B, Energy Technol., 5, 1344 (2017)
  22. Dasireddy VDBC, Likozar B, Fuel, 196, 325 (2017)
  23. Jane A, Dronov R, Hodges A, Voelcker NH, Trends Biotechnol., 27, 230 (2009)
  24. Chen ML, Xiong R, Cui X, Wang Q, Liu XW, Langmuir, 35(3), 671 (2019)
  25. Panchan N, Donphai W, Junsomboon J, Niamnuy C, Chareonpanich M, Acs Omega, 4, 18076 (2019)
  26. Jin JH, Shin S, Jung J, J. Nanomater, 2019 (2019)
  27. Seo JE, Kim Y, Kim Y, Kim K, Lee JH, Lee DH, Kim Y, Shin SJ, Kim DM, Kim SY, Kim T, Yoon CW, Nam SW, J. Power Sources, 254, 329 (2014)
  28. Bucior BJ, Bobbitt NS, Islamoglu T, Goswami S, Gopalan A, Yildirim T, Farha OK, Bagheri N, Snurr RQ, Mol Syst Des Eng, 4, 162 (2019)
  29. Gong A, Verstraete D, Int. J. Hydrog. Energy, 42(33), 21311 (2017)
  30. Singh LP, Bhattacharyya SK, Kumar R, Mishra G, Sharma U, Singh G, Ahalawat S, Adv. Colloid Interface Sci., 214, 17 (2014)
  31. Kobayashi T, Gupta S, Caporini MA, Pecharsky VK, Pruski M, J Phys Chem C, 118, 19548 (2014)
  32. Li L, Yao X, Sun CH, Du AJ, Cheng LN, Zhu ZH, Yu CZ, Zou J, Smith SC, Wang P, Cheng HM, Frost RL, Lu GQM, Adv. Funct. Mater., 19(2), 265 (2009)
  33. Demirci UB, Bernard S, Chiriac R, Toche F, Miele P, J. Power Sources, 196, 279 (2011)
  34. Hwang HT, Greenan P, Kim SJ, Varma A, AIChE J., 59, 0001 (2013)
  35. Yao QL, Lu ZH, Jia YS, Chen XS, Liu X, Int. J. Hydrog. Energy, 40(5), 2207 (2015)
  36. Luo JH, Kang XD, Wang P, Int. J. Hydrog. Energy, 38(11), 4648 (2013)
  37. Luo JH, Kang XD, Chen CG, Song JF, Luo DL, Wang P, J Phys Chem C, 120, 18386 (2016)
  38. Feng Y, Zhou X, Yang J, Gao X, Yin L, Zhao Y, Zhang B, Acs Sustain Chem Eng, 8, 2122 (2020)
  39. Komova OV, Simagina VI, Kayl NL, Odegova GV, Netskina OV, Chesalou YA, Ozerova AM, Int. J. Hydrog. Energy, 38(15), 6442 (2013)
  40. Cui L, Xu YH, Niu L, Yang WR, Liu JQ, Nano Res., 10, 595 (2017)
  41. Frueh S, Kellett R, Mallery C, Molter T, Willis WS, King'ondu C, Suib SL, Inorg. Chem., 50(3), 783 (2011)
  42. Komova OV, Netskina OV, Ozerova AM, Odegova GV, Arzumanov SS, Simagina VI, Inorganics, 7, 96 (2019)
  43. Lai SW, Lin HL, Yu TL, Lee LP, Weng BJ, Int. J. Hydrog. Energy, 37(19), 14393 (2012)
  44. Zhao JZ, Shi JF, Zhang XW, Cheng FY, Liang J, Tao ZL, Chen J, Adv. Mater., 22(3), 394 (2010)
  45. Zhang JS, Zhao Y, Akins D, Lee JW, J Phys Chem C, 115, 8386 (2011)
  46. Luo JH, Kang XD, Fang ZZ, Wang P, Dalton T, 40, 6469 (2011)