화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.6, 573-579, June, 2020
Ultrahigh Energy Storage Capacitance and High Breakdown Strength in Biaxially Oriented Poly(vinylidene fluoride) Using a High-Electric-Induced Technique
E-mail:
The development of high dielectric materials with high energy densities is a crucial research domain in the modern microelectronics and power systems. The objective of this work was to develop the highly ordered crystal orientations and large ferroelectric crystalline β/γ-phases in the biaxially oriented poly(vinylidene fluoride) (BOPVDF). Importantly, a high discharged energy density and high dielectric constant was achieved by using a high-electric-induced technique. A suitable poling electric field was applied to the BOPVDF films in order to enhance the breakdown strength. Remarkably, the BOPVDF film poled at the electric field of 113 MV m-1 achieved an unprecedented discharged energy density of 25.4 J cm-3 at an ultra-high electric field of 550 MV m-1, which is by far the highest value ever achieved in flexible polymer-based capacitor films. Comparatively, the unpoled BOPVDF and commercial biaxially oriented polypropylene (BOPP) exhibited only a discharged energy density of 7.9 J cm-3 and 1.2 J cm-3, respectively. This systematic study provides a new design paradigm to exploit PVDF-based dielectric polymers for capacitor applications.
  1. Chu BJ, Zhou X, Ren KL, Neese B, Lin MR, Wang Q, Bauer F, Zhang QM, Science, 313, 334 (2006)
  2. Xie Y, Yu Y, Feng Y, Jiang W, Zhang Z, ACS Appl. Mater. Interfaces, 9, 2995 (2017)
  3. Zhang X, Shen Y, Xu B, Zhang QH, Gu L, Jiang JY, Ma J, Lin YH, Nan CW, Adv. Mater., 28(10), 2055 (2016)
  4. Guan FX, Pan JL, Wang J, Wang Q, Zhu L, Macromolecules, 43(1), 384 (2010)
  5. Guo YL, Yu G, Liu YQ, Adv. Mater., 22(40), 4427 (2010)
  6. Di CA, Zhang FJ, Zhu DB, Adv. Mater., 25(3), 313 (2013)
  7. Chen XZ, Li Q, Chen X, Guo X, Ge HX, Liu Y, Shen QD, Adv. Funct. Mater., 23(24), 3124 (2013)
  8. Chen YX, Chen X, Lu HW, Zhang L, Yang Y, Shen QD, Polymer, 143, 281 (2018)
  9. Tang H, Sodano HA, Nano Lett., 13, 1373 (2013)
  10. Rabuffi M, Picci G, IEEE T. Plasma. Sci., 30, 1939 (2002)
  11. Fredin LA, Li Z, Ratner MA, Lanagan MT, Marks TJ, Adv. Mater., 24(44), 5946 (2012)
  12. Xu W, Yang G, Jin L, Liu J, Zhang Y, Zhang Z, Jiang Z, ACS Appl. Mater. Interfaces, 10, 11233 (2018)
  13. Lovinger AJ, Science, 220, 1115 (1983)
  14. Lovinger AJ, Davis D, Cais R, Kometani J, Polymer, 28, 617 (1987)
  15. Calleja FB, Arche AG, Ezquerra T, Cruz CS, Batallan F, Frick B, Cabarcos EL, in Structure in Polymers with Special Properties, Springer, pp1-48 1993.
  16. Li GR, Kagami N, Ohigashi H, J. Appl. Phys., 72, 1056 (1992)
  17. Zhang QM, Science, 280, 2101 (1998)
  18. Zhang QM, Cheng ZY, Bharti V, Appl. Phys. A, 70, 307 (2000)
  19. Zhang ZC, Chung TCM, Macromolecules, 40(4), 783 (2007)
  20. Xing CY, Li JY, Yang CM, Li YJ, Macromol. Rapid Commun., 37(19), 1559 (2016)
  21. Guan FX, Yang LY, Wang J, Guan B, Han K, Wang Q, Zhu L, Adv. Funct. Mater., 21(16), 3176 (2011)
  22. Chen YX, Tang X, Shu J, Wang XL, Hu WB, Shen QD, J. Polym. Sci. B: Polym. Phys., 54(12), 1160 (2016)
  23. Mohammadi B, Yousefi AA, Bellah SM, Polym. Test., 26, 42 (2007)
  24. Yang L, Ho J, Allahyarov E, Mu R, Zhu L, ACS Appl. Mater. Interfaces, 7, 19894 (2015)
  25. Huang XY, Jiang PK, Adv. Mater., 27(3), 546 (2015)
  26. Li Y, Huang X, Hu Z, Jiang P, Li S, Tanaka T, ACS Appl. Mater Interfaces, 3, 4396 (2011)
  27. Xing CY, Zhao LP, You JC, Dong WY, Cao XJ, Li YJ, J. Phys. Chem. B, 116(28), 8312 (2012)
  28. Feihua L, Qi L, Jin C, Zeyu L, Guang Y, Yang L, Lijie D, Chuanxi X, Hong W, Qing W, Adv. Funct. Mater., 27, 160629 (2017)
  29. Chen YX, Cheng ZX, Shen QD, IEEE Trans. Dielectr. Electr. Insul., 24, 682 (2017)
  30. Han QLK, Gadinski MR, Zhang GZ, Wang Q, Adv. Mater., 26(36), 6244 (2014)
  31. Meng QJ, Li WJ, Zheng YS, Zhang ZC, J. Appl. Polym. Sci., 116(5), 2674 (2010)
  32. Klein RJ, Runt J, Zhang QM, Macromolecules, 36(19), 7220 (2003)
  33. Zhang ZC, Chung TCM, Macromolecules, 40(26), 9391 (2007)
  34. Sun LL, Li B, Zhao Y, Mitchell G, Zhong WH, Nanotechnology, 21, 305702 (2010)
  35. Hahn B, Wendorff J, Yoon DY, Macromolecules, 18, 718 (1985)
  36. Zhou X, Zhao X, Suo Z, Zou C, Runt J, Liu S, Zhang S, Zhang QM, Appl. Phys. Lett., 94, 162901 (2009)
  37. Zhou X, Chu B, Neese B, Lin M, Zhang QM, IEEE Trans. Dielectr. Electr. Insul., 5, 1133 (2007)
  38. Zhang ZC, Meng QJ, Chung TCM, Polymer, 50(2), 707 (2009)
  39. Li J, Hu X, Gao G, Ding S, Li H, Yang L, Zhang Z, J. Mater. Chem. C, 1, 1111 (2013)
  40. Ren XT, Meng N, Yan HX, Bilotti E, Reece MJ, Polymer, 168, 246 (2019)
  41. Wang L, Luo H, Zhou X, Yuan X, Zhou K, Zhang D, Compos. Part A, 117, 369 (2019)
  42. Zhu H, Liu Z, Wang FH, J. Mater. Sci., 52(9), 5048 (2017)
  43. Wang YF, Wang LX, Yuan QB, Chen J, Niu YJ, Xu XW, Cheng YT, Yao B, Wang Q, Wang H, Nano Energy, 44, 364 (2018)
  44. Chen YX, Yue YF, Liu J, Shu J, Liu AP, Chu BJ, Xu MH, Xu WZ, Chen T, Zhang J, Shen QD, Phys. Chem. Chem. Phys., 21, 20661 (2019)
  45. Chen YX, Zhang L, Liu JH, Lin XL, Xu WZ, Yue YF, Shen QD, Carbon, 144, 15 (2019)
  46. Zhang GZ, Li Q, Gu HM, Jiang SL, Han K, Gadinski MR, Haque MA, Zhang QM, Wang Q, Adv. Mater., 27(8), 1450 (2015)