Macromolecular Research, Vol.28, No.6, 573-579, June, 2020
Ultrahigh Energy Storage Capacitance and High Breakdown Strength in Biaxially Oriented Poly(vinylidene fluoride) Using a High-Electric-Induced Technique
E-mail:
The development of high dielectric materials with high energy densities is a crucial research domain in the modern microelectronics and power systems. The objective of this work was to develop the highly ordered crystal orientations and large ferroelectric crystalline β/γ-phases in the biaxially oriented poly(vinylidene fluoride) (BOPVDF). Importantly, a high discharged energy density and high dielectric constant was achieved by using a high-electric-induced technique. A suitable poling electric field was applied to the BOPVDF films in order to enhance the breakdown strength. Remarkably, the BOPVDF film poled at the electric field of 113 MV m-1 achieved an unprecedented discharged energy density of 25.4 J cm-3 at an ultra-high electric field of 550 MV m-1, which is by far the highest value ever achieved in flexible polymer-based capacitor films. Comparatively, the unpoled BOPVDF and commercial biaxially oriented polypropylene (BOPP) exhibited only a discharged energy density of 7.9 J cm-3 and 1.2 J cm-3, respectively. This systematic study provides a new design paradigm to exploit PVDF-based dielectric polymers for capacitor applications.
Keywords:biaxially oriented poly(vinylidene fluoride);high electric poling;high power-density capacitor;dielectric constant;ferroelectric crystalline phase
- Chu BJ, Zhou X, Ren KL, Neese B, Lin MR, Wang Q, Bauer F, Zhang QM, Science, 313, 334 (2006)
- Xie Y, Yu Y, Feng Y, Jiang W, Zhang Z, ACS Appl. Mater. Interfaces, 9, 2995 (2017)
- Zhang X, Shen Y, Xu B, Zhang QH, Gu L, Jiang JY, Ma J, Lin YH, Nan CW, Adv. Mater., 28(10), 2055 (2016)
- Guan FX, Pan JL, Wang J, Wang Q, Zhu L, Macromolecules, 43(1), 384 (2010)
- Guo YL, Yu G, Liu YQ, Adv. Mater., 22(40), 4427 (2010)
- Di CA, Zhang FJ, Zhu DB, Adv. Mater., 25(3), 313 (2013)
- Chen XZ, Li Q, Chen X, Guo X, Ge HX, Liu Y, Shen QD, Adv. Funct. Mater., 23(24), 3124 (2013)
- Chen YX, Chen X, Lu HW, Zhang L, Yang Y, Shen QD, Polymer, 143, 281 (2018)
- Tang H, Sodano HA, Nano Lett., 13, 1373 (2013)
- Rabuffi M, Picci G, IEEE T. Plasma. Sci., 30, 1939 (2002)
- Fredin LA, Li Z, Ratner MA, Lanagan MT, Marks TJ, Adv. Mater., 24(44), 5946 (2012)
- Xu W, Yang G, Jin L, Liu J, Zhang Y, Zhang Z, Jiang Z, ACS Appl. Mater. Interfaces, 10, 11233 (2018)
- Lovinger AJ, Science, 220, 1115 (1983)
- Lovinger AJ, Davis D, Cais R, Kometani J, Polymer, 28, 617 (1987)
- Calleja FB, Arche AG, Ezquerra T, Cruz CS, Batallan F, Frick B, Cabarcos EL, in Structure in Polymers with Special Properties, Springer, pp1-48 1993.
- Li GR, Kagami N, Ohigashi H, J. Appl. Phys., 72, 1056 (1992)
- Zhang QM, Science, 280, 2101 (1998)
- Zhang QM, Cheng ZY, Bharti V, Appl. Phys. A, 70, 307 (2000)
- Zhang ZC, Chung TCM, Macromolecules, 40(4), 783 (2007)
- Xing CY, Li JY, Yang CM, Li YJ, Macromol. Rapid Commun., 37(19), 1559 (2016)
- Guan FX, Yang LY, Wang J, Guan B, Han K, Wang Q, Zhu L, Adv. Funct. Mater., 21(16), 3176 (2011)
- Chen YX, Tang X, Shu J, Wang XL, Hu WB, Shen QD, J. Polym. Sci. B: Polym. Phys., 54(12), 1160 (2016)
- Mohammadi B, Yousefi AA, Bellah SM, Polym. Test., 26, 42 (2007)
- Yang L, Ho J, Allahyarov E, Mu R, Zhu L, ACS Appl. Mater. Interfaces, 7, 19894 (2015)
- Huang XY, Jiang PK, Adv. Mater., 27(3), 546 (2015)
- Li Y, Huang X, Hu Z, Jiang P, Li S, Tanaka T, ACS Appl. Mater Interfaces, 3, 4396 (2011)
- Xing CY, Zhao LP, You JC, Dong WY, Cao XJ, Li YJ, J. Phys. Chem. B, 116(28), 8312 (2012)
- Feihua L, Qi L, Jin C, Zeyu L, Guang Y, Yang L, Lijie D, Chuanxi X, Hong W, Qing W, Adv. Funct. Mater., 27, 160629 (2017)
- Chen YX, Cheng ZX, Shen QD, IEEE Trans. Dielectr. Electr. Insul., 24, 682 (2017)
- Han QLK, Gadinski MR, Zhang GZ, Wang Q, Adv. Mater., 26(36), 6244 (2014)
- Meng QJ, Li WJ, Zheng YS, Zhang ZC, J. Appl. Polym. Sci., 116(5), 2674 (2010)
- Klein RJ, Runt J, Zhang QM, Macromolecules, 36(19), 7220 (2003)
- Zhang ZC, Chung TCM, Macromolecules, 40(26), 9391 (2007)
- Sun LL, Li B, Zhao Y, Mitchell G, Zhong WH, Nanotechnology, 21, 305702 (2010)
- Hahn B, Wendorff J, Yoon DY, Macromolecules, 18, 718 (1985)
- Zhou X, Zhao X, Suo Z, Zou C, Runt J, Liu S, Zhang S, Zhang QM, Appl. Phys. Lett., 94, 162901 (2009)
- Zhou X, Chu B, Neese B, Lin M, Zhang QM, IEEE Trans. Dielectr. Electr. Insul., 5, 1133 (2007)
- Zhang ZC, Meng QJ, Chung TCM, Polymer, 50(2), 707 (2009)
- Li J, Hu X, Gao G, Ding S, Li H, Yang L, Zhang Z, J. Mater. Chem. C, 1, 1111 (2013)
- Ren XT, Meng N, Yan HX, Bilotti E, Reece MJ, Polymer, 168, 246 (2019)
- Wang L, Luo H, Zhou X, Yuan X, Zhou K, Zhang D, Compos. Part A, 117, 369 (2019)
- Zhu H, Liu Z, Wang FH, J. Mater. Sci., 52(9), 5048 (2017)
- Wang YF, Wang LX, Yuan QB, Chen J, Niu YJ, Xu XW, Cheng YT, Yao B, Wang Q, Wang H, Nano Energy, 44, 364 (2018)
- Chen YX, Yue YF, Liu J, Shu J, Liu AP, Chu BJ, Xu MH, Xu WZ, Chen T, Zhang J, Shen QD, Phys. Chem. Chem. Phys., 21, 20661 (2019)
- Chen YX, Zhang L, Liu JH, Lin XL, Xu WZ, Yue YF, Shen QD, Carbon, 144, 15 (2019)
- Zhang GZ, Li Q, Gu HM, Jiang SL, Han K, Gadinski MR, Haque MA, Zhang QM, Wang Q, Adv. Mater., 27(8), 1450 (2015)