화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.6, 615-624, June, 2020
Determination of Crystallinity of Thermosetting Urea-Formaldehyde Resins Using Deconvolution Method
E-mail:
Current low formaldehyde/urea (F/U) molar ratio urea-formaldehyde (UF) resins are quite different from high molar ratio UF resins used 20 years ago in terms of their crystallinity. For the first time, this paper reports a method of determining the crystallinity of thermosetting urea-formaldehyde (UF) resins of different molar ratios with the deconvolution method, using Voigt, Lorentzian, and Gaussian function. The Gaussian deconvolution of X-ray diffraction (XRD) patterns was the most suitable and reliable curve-fitting method, which gave the crystallinity value from 31.8% to 56.1% as the molar ratio decreased from 1.6 to 1.0. These results also indicated that low-molar-ratio (1.2 and 1.0) UF resins were semi-crystalline, whereas high molar-ratio (1.6 and 1.4) resins were amorphous. The Gaussian function was also employed to determine the crystallinity of the low-molar-ratio (1.0) UF resins cured at different curing and hardener conditions. Hardener level had greater influence on the crystallinity than hardener type even though the curing temperature and time affected the crystallinity.
  1. Dunky M, Handbook of Adhesive Technology, 3rd ed., CRC Press, 2017.
  2. Dunky M, Int. J. Adhes. Adhes., 18, 95 (1998)
  3. Myers G, Forest Prod. J., 34, 35 (1984)
  4. Que Z, Furuno T, Katoh S, Nishino Y, Build. Environ., 42, 1257 (2007)
  5. Park BD, Jeong HW, Int. J. Adhes. Adhes., 31, 524 (2011)
  6. Nuryawan A, Singh AP, Zanetti M, Park BD, Causin V, Int. J. Adhes. Adhes., 72, 62 (2017)
  7. Dunker AK, John WE, Rammon R, Farmer B, Johns SJ, J. Adhes., 19, 153 (1986)
  8. Stuligross J, Koutsky JA, J. Adhes., 18, 281 (1985)
  9. Park B, Causin V, Eur. Polym. J., 49, 532 (2013)
  10. Levendis D, Pizzi A, Ferg E, Holzforschung, 46, 263 (1992)
  11. Ahvenainen P, Kontro I, Svedstrom K, Cellulose, 23, 1073 (2016)
  12. Mo Z, Zhang H, J. Macromol. Sci. Part C, 35, 555 (1995)
  13. Ciolacu D, Ciolacu F, Popa VI, Cell. Chem. Technol., 45, 13 (2011)
  14. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK, technol. Biofuels, 3, 10 (2010)
  15. Jeong BR, Park BD, Causin V, J. Ind. Eng. Chem., 79, 87 (2019)
  16. Liu M, Thirumalai RVKG, Wu Y, Wan H, RSC Adv., 7, 49536 (2017)
  17. Boukezzi L, Boubakeur A, Lallouani M, 2007 Annual Report -Conference on Electrical Insulation and Dielectric Phenomena, CEIDP, Vancouver, 2007, pp 65-68 (2007).
  18. Li M, Dingemans TJ, Polymer, 108, 372 (2017)
  19. Rotaru R, Savin M, Tudorachi N, Peptu C, Samoila P, Sacarescu L, Harabagiu V, Polym. Chem., 9, 860 (2018)
  20. He JX, Cui SZ, Wang SY, J. Appl. Polym. Sci., 107(2), 1029 (2008)
  21. Garvey CJ, Parker IH, Simon GP, Macromol. Chem. Phys., 206, 1568 (2005)
  22. Jain V, Biesinger MC, Linford MR, Appl. Surf. Sci., 447, 548 (2018)
  23. Ferg EE, Pizzi A, Levendis DC, J. Appl. Polym. Sci., 50, 907 (1993)
  24. Seshadri KS, Jones RN, Spectrochim. Acta, 19, 1013 (1963)
  25. Wang H, Cao M, Li T, Yang L, Duan Z, Zhou X, Du G, Polymers, 10, 602 (2018)
  26. Xing C, Zhang SY, Deng J, Wang SQ, J. Appl. Polym. Sci., 103(3), 1566 (2007)
  27. Dutkiewicz J, J. Appl. Polym. Sci., 28, 3313 (1983)