화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.6, 279-284, June, 2020
Photocatalytic Degradation of Rhodamine B Using Carbon-Doped Carbon Nitride under Visible Light
E-mail:,
In this work, a carbon-doped carbon nitride photocatalyst is successfully synthesized through a simple centrifugal spinning method after heat treatment. The morphology and properties of the prepared photo catalyst are characterized by Xray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectrophotometer (UV-vis), and specific surface area. The results show that the band gap of the prepared sample, g-CN-10 is 2.1 eV, is significantly lower than that of pure carbon nitride, 2.7 eV. As the amount of cotton candy increased, the absorption capacity of the prepared catalyst for visible light is significantly enhanced. In addition, the degradation efficiency of Rhodamine B (RhB) by sample g-CN-10 is 98.8 % over 2h, which is twice that value of pure carbon nitride. The enhancement of photocatalytic ability is attributed to the increase of specific surface area after the carbon doping modifies carbon nitride. A possible photocatalytic degradation mechanism of carbon-doped carbon nitride is also suggested.
  1. Hao RR, Wang GH, Tang H, Sun LL, Xu C, Han DY, Appl. Catal. B: Environ., 187, 47 (2016)
  2. Zhang LG, Chen XF, Guan J, Jiang YJ, Hou TG, Mu XD, Mater. Res. Bull., 48(9), 3485 (2013)
  3. Zhang FJ, Xie FZ, Liu J, Zhao W, Zhang K, Ultrason. Sonochem., 20, 209 (2013)
  4. Tong ZW, Yang D, Xiao TX, Tian Y, Jiang ZY, Chem. Eng. J., 260, 117 (2015)
  5. Reddy KR, Karthik KV, Prasad SB, Soni SK, Jeong HM, Raghu AV, Polyhedron, 120, 169 (2016)
  6. Lu D, Wang H, Zhao X, Kondamareddy KK, Ding J, Li C, Fang P, ACS Sustainable Chem. Eng., 5, 1436 (2017)
  7. Chai B, Yan JT, Wang CL, Ren ZD, Zhu YC, Appl. Surf. Sci., 391, 376 (2017)
  8. Jin J, Liang Q, Ding C, Li Z, Xu S, J. Alloy. Compd., 691, 763 (2017)
  9. Zhang FJ, Zhang KH, Xie FZ, Liu J, Dong HF, Zhao W, Meng ZD, Appl. Surf. Sci., 265, 578 (2013)
  10. Alansi AM, Al-Qunaibit M, Alade IO, Qahtan TF, Saleh TA, J. Mol. Liq., 253, 297 (2018)
  11. Guo F, Li M, Ren H, Huang X, Shu K, Shi W, Lu C, Sep. Purif. Technol., 228, 115770 (2019)
  12. Zhao C, Chen Z, Xu J, Liu Q, Xu H, Tang H, Li G, Jiang Y, Qu F, Lin Z, Yang X, Appl. Catal. B: Environ., 256, 117867 (2019)
  13. Lin X, Liu C, Wang JB, Yang S, Shi JY, Hong YZ, Sep. Purif. Technol., 226, 117 (2019)
  14. Cheng Y, He L, Xia G, Ren C, Wang Z, New J. Chem., 43, 14841 (2019)
  15. Wang M, Tan GQ, Zhang D, Li B, Lv L, Wang Y, Ren HJ, Zhang XL, Xia A, Liu Y, Appl. Catal. B: Environ., 254, 98 (2019)
  16. Wang LJ, Zhou G, Tian Y, Yan LK, Deng MX, Yang B, Kang ZH, Sun HZ, Appl. Catal. B: Environ., 244, 262 (2019)
  17. Zhang FJ, Xie FZ, Zhu SF, Liu J, Zhang J, Mei SF, Zhao W, Chem. Eng. J., 228, 435 (2013)
  18. Hu C, Hung WZ, Wang MS, Lu PJ, Carbon, 127, 374 (2018)
  19. Shinde SS, Sami A, Lee JH, Carbon, 96, 929 (2016)
  20. Ai M, Zhang JW, Gao R, Pan L, Zhang X, Zou JJ, Appl. Catal. B: Environ., 256, 117805 (2019)
  21. Xia P, Zhu B, Cheng B, Yu J, Xu J, ACS Sustainable Chem. Eng., 6, 965 (2018)