화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.4, 559-565, July, 2020
전기 절연형 고분자 복합재의 열전도도와 기계적 특성 상관성 연구
Thermal Conductivity Studies on Electrically Insulating Polymer Composites in Relation to Mechanical Properties
E-mail:
초록
다양한 고분자 매트릭스와 세라믹 필러의 조합을 통하여 전기 절연형 열전도성 복합재를 제조한 뒤 열전도성과 기계적 특성에 대해 알아보았다. 세라믹 필러의 함량에 비례하여 복합재의 열전도도는 상승하였고 동일한 함량에서 매트릭스의 결정화도가 높거나 필러의 크기가 클수록 상대적으로 높은 열전도도를 보였다. 인장강도, 굴곡강도, 충격강도를 포함한 기계적 강도는 필러의 함량이 증가할수록 전반적으로 감소하는 경향을 보였다. 열전도도 측면에서는 입자의 크기가 크고 함량을 높이는 것이 유리하지만 무게의 증가와 기계적 강도 저하를 수반하기 때문에 열전도도와 기계적 특성을 고려한 재료의 선정과 배합비에 대한 최적화가 필요할 것으로 보인다.
Various polymer composites consisting of different polymers and ceramic particles were prepared and then thermal conductivity was investigated in relation to mechanical properties. Thermal conductivity of the composites increased with an increase of the ceramic loading. In addition, the use of polymer with high crystallinity and larger particles was more efficient to enhance thermal conductivity. The mechanical properties such as tensile strength, flexural strength, and impact strength gradually decreased as the ceramic content increased. It is realized that the selection of appropriate materials and their combination is prerequisite to adjust the thermal conductivity and mechanical properties of polymer composites.
  1. Yang J, Thermal Conductivity: Theory, Properties, and Applications, Kluwer Academic/Plenum, New York, 2004.
  2. Henry A, Annual Review of Heat Transfer, Begell House, Danbury, 2014.
  3. Watari K, Ishizaki K, Tsuchiya F, J. Mater. Sci., 28, 3709 (1993)
  4. Jackson TB, Virkar AV, More KL, Dinwiddie RB, Cutler RA, J. Am. Ceram. Soc., 80, 1421 (1997)
  5. Watari K, Ishizaki K, Fujikawa T, J. Mater. Sci., 27, 2627 (1992)
  6. Slack GA, Tanzilli RA, Pohl RO, Vandersande JW, J. Phys. Chem. Solids, 48, 641 (1987)
  7. Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D, Prog. Polym. Sci., 61, 1 (2016)
  8. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B, Prog. Polym. Sci., 59, 41 (2016)
  9. Lee GW, Park M, Kim JK, Lee JI, Yoon HG, Composites Part A, 37, 727 (2006)
  10. Zhou W, Wang C, Ai T, Wu K, Zhao F, Gu H, Composites Part A, 40, 830 (2009)
  11. Xu Y, Chung DDL, Compos. Interface, 7, 243 (2000)
  12. Lee HL, Ha SM, Yoo Y, Lee SG, Polym. Sci. Technol., 24(1), 30 (2013)
  13. Yoshihara S, Tokita M, Ezaki T, Nakamura M, Sakaguchi M, Matsumoto K, Watanabe J, J. Appl. Polym. Sci., 131, 39896 (2014)
  14. Harada M, Ochi M, Tobita M, Kimura T, Ishigaki T, Shimoyama N, Aoki H, J. Polym. Sci. B: Polym. Phys., 41(14), 1739 (2003)
  15. Song SH, Katagi H, Takezawa Y, Polymer, 53(20), 4489 (2012)
  16. Krause B, Kroschwald L, Potschke P, Polymer, 11, 122 (2019)
  17. Yu S, Hing P, Hu X, Composites Part A, 33, 289 (2002)
  18. Mamunya YP, Davydenko VV, Pissis P, Lebedev EV, Eur. Polym. J., 38, 1887 (2002)
  19. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K, Polymer, 47(6), 2036 (2006)
  20. Cho HB, Nakayama T, Suematsu H, Suzuki T, Jiang W, Niihara K, Song E, Eom NSA, Kim SI, Choa YH, Compos. Sci. Technol., 129, 205 (2016)
  21. Jimenez G, Ogata N, Kawai H, Ogihara T, J. Appl. Polym. Sci., 64(11), 2211 (1997)
  22. Xu XM, Li BJ, Lu HM, Zhang ZJ, Wang HG, Appl. Surf. Sci., 254(5), 1456 (2007)
  23. Xia R, Sun M, Yang B, Qian J, Chem P, Cao M, Miao J, Su L, Polym. Korea, 42(2), 230 (2018)
  24. Yuan D, Gao Y, Guo Z, Yu J, J. Appl. Polym. Sci., 134, 45371 (2017)
  25. Landon G, Lewis G, Boden GF, J. Mater. Sci., 12, 1605 (1977)
  26. Cho J, Joshi MS, Sun CT, Compos. Sci. Technol., 66, 1941 (2006)
  27. Fu SY, Feng XQ, Lauke B, Mai YW, Composites Part B, 39, 933 (2008)
  28. Hwang SH, Elastomers Compos., 50, 205 (2015)
  29. Kim H, Lee DS, Lim JS, Lyu MY, Polym. Korea, .6, 59 (2012)