화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.7, 333-337, July, 2020
Fabrication and Electrical Transport Characteristics of All-Perovskite Oxide DyMnO3 / Nb-1.0 wt% Doped SrTiO3 Heterostructures
E-mail:
Orthorhombic DyMnO3 films are fabricated epitaxially on Nb-1.0 wt%-doped SrTiO3 single crystal substrates using pulsed laser deposition technique. The structure of the deposited DyMnO3 films is studied by X-ray diffraction, and the epitaxial relationship between the film and the substrate is determined. The electrical transport properties reveal the diodelike rectifying behaviors in the all-perovskite oxide junctions over a wide temperature range (100 ~ 340 K). The forward current is exponentially related to the forward bias voltage, and the extracted ideality factors show distinct transport mechanisms in high and low positive regions. The leakage current increases with increasing reverse bias voltage, and the breakdown voltage decreases with decrease temperature, a consequence of tunneling effects because the leakage current at low temperature is larger than that at high temperature. The determined built-in potentials are 0.37 V in the low bias region, and 0.11 V in the high bias region, respectively. The results show the importance of temperature and applied bias in determining the electrical transport characteristics of all-perovskite oxide heterostructures.
  1. Dash U, Jung CU, J. Magn., 23, 345 (2018)
  2. Harikrishnan S, Roßler S, Kumar CMN, Bhat HL, Roßler UK, Wirth S, Steglich F, Elizabeth S, J. Phys. Condens. Matter, 21, 096002 (2009)
  3. Ito D, Fujimura N, Yoshimura T, Ito T, J. Appl. Phys., 93, 5563 (2003)
  4. Jandl S, Mansouri S, Mukhin AA, Ivanov VY, Balbashov A, Gospodino MM, Nekvasil V, Orlita M, J. Magn. Magn. Mater., 323, 1104 (2011)
  5. Ivanov VY, Mukhin AA, Prokhorov AS, Balbashov AM, Iskhakova LD, Phys. Solid State, 48, 1726 (2006)
  6. Remsen S, Dabrowski B, Chmaissem O, Mais J, Szewczyk A, J. Solid State Chem., 184, 2306 (2011)
  7. Wang WT, Korean J. Mater. Res., 29(12), 753 (2019)
  8. Yadagiri K, Nithya R, Shukla N, Satya AT, J. Alloy. Compd., 695, 2959 (2017)
  9. Bosak AA, Dubourdieu C, Senateur JP, Gorbenko OY, Kaul AR, Cryst. Eng., 5, 355 (2002)
  10. Rao CN, Cheetham AK, Science, 272(5260), 369 (1996)
  11. Mahendiran R, Tiwary SK, Raychadhuri AK, et al., Phys. Rev. B, 53, 3348 (1996)
  12. Chanara K, Ohno T, Kasai M, Kozono Y, Appl. Phys. Lett., 63, 1990 (1993)
  13. Von Helmolt R, Wecker J, Holzapfel B, Schultz L, Samwer K, Phys. Rev. Lett., 71, 2331 (1994)
  14. Sugiura M, Uragou K, Noda M, Tachiki M, Kobayashi T, Jpn. J. Appl. Phys., 38, 2675 (1999)
  15. Watanabe Y, Phys. Rev. B, 57, R5563 (1998)
  16. Cui YM, Zhang LW, Wang CC, Xie GL, Chen CP, Cao BS, Appl. Phys. Lett., 86, 203501 (2005)
  17. Bruno FY, Garcia-Barriocanal J, Torija M, Rivera A, Sefrioui Z, Leighton C, Leon C, Santamaria J, Appl. Phys. Lett., 92, 082106 (2008)
  18. Chen YZ, Sun JR, Xie YW, Wang DJ, Lu WM, Liang S, Shen BG, Appl. Phys. Lett., 90, 143508 (2007)
  19. Casey HC, Muth J, Krishnankutty S, Zavada JM, Appl. Phys. Lett., 68, 2867 (1996)
  20. Werner JH, Guttler HH, J. Appl. Phys., 69, 1522 (1991)
  21. Wang W, Yuan D, Sun Y, Sun Y, J. Appl. Phys., 106, 024106 (2009)