Korean Journal of Materials Research, Vol.30, No.7, 343-349, July, 2020
비납계 (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) 압전 세라믹의 비정상 결정 성장 거동 비교
Comparison of Abnormal Grain Growth Behavior of Lead-Free (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) Piezoelectric Ceramics
E-mail:
NKN [(Na,K)NbO3] is a candidate lead-free piezoelectric material to replace PZT [Pb(Zr,Ti)O3]. A single crystal has excellent piezoelectric-properties and its properties are dependent of the crystal orientation direction. However, it is hard to fabricate a single crystal with stoichiometrically stable composition due to volatilization of sodium during the growth process. To solve this problem, a solid solution composition is designed (Na,K)NbO3-Ba(Cu,Nb)O3 and solid state grain growth is studied for a sizable single crystal. Ceramic powders of (Na,K)NbO3-M(Cu,Nb)O3 (M = Ca, Sr, Ba) are synthesized and grain growth behavior is investigated for different temperatures and times. Average normal grain sizes of individual specimens, which are heat-treated at 1,125 °C for 10 h, are 6.9, 2.8, and 1.6 μm for M = Ca, Sr, and Ba, respectively. Depending on M, the distortion of NKN structure can be altered. XRD results show that (NKN-CaCuN: shrunken orthorhombic; NKN-SrCuN: orthorhombic; NKN-BaCuN: cubic). For the sample heat-treated at 1,125 °C for 10 h, the maximum grain sizes of individual specimens are measured as 40, 5, and 4,000 μm for M = Ca, Sr, and Ba, respectively. This abnormal grain size is related to the partial melting temperature (NKN-CaCuN: 960 °C; NKN-SrCuN: 971 °C; NKN-BaCuN: 945 °C).
- Zhang MH, Thong HC, Lu YX, Sun W, Li JF, Wang K, J. Korean Ceram. Soc., 54, 261 (2017)
- Wang XP, Wu JG, Xiao DQ, Zhu JG, Cheng XJ, Zheng T, Zhang BY, Lou XJ, Wang XJ, J. Am. Chem. Soc., 136(7), 2905 (2014)
- Zhang H, Zhu Y, Fan P, Marwat MA, Ma W, Liu K, Liu H, Xie B, Wang K, Koruza J, Acta Mater., 156, 389 (2018)
- Park CK, Kang DK, Lee SH, Kong YM, Jeong DY, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 541 (2017)
- Park JH, Park HJ, Choi BC, Korean. J. Mater. Res., 26, 721 (2016)
- Lee D, Vu H, Sun H, Pham TL, Nguyen DT, Lee JS, Fisher JG, Ceram. Int., 42, 18894 (2016)
- Uwiragiye E, Farooq MU, Moon SH, Pham TL, Nguyen DT, Lee JS, Fisher JG, J. European Ceram. Soc., 37, 4597 (2017)
- Han G, Ryu J, Ahn CW, Yoon WH, Choi JJ, Hahn BD, Kim JW, Choi JH, Park DS, J. Am. Ceram. Soc., 95(5), 1489 (2012)
- Rahman A, Cho KH, Ahn CW, Ryu J, Choi JJ, Kim JW, Yoon WH, Hahn BD, J. European Ceram. Soc., 38, 1416 (2018)
- Ahn CW, Lee HY, Han G, Zhang S, Choi SY, et al., Sci. Rep., 5, 17656 (2015)
- Wang HQ, Ruan DS, Dai YJ, Zhang XW, Curr. Appl. Phys., 12(2), 504 (2012)
- Uthaisar C, Kantha P, Yimnirun R, Pojprapai S, Integrated Ferroelectrics, 149, 114 (2013)
- Guo Y, Kakimoto KI, Ohsato H, Jpn. J. Appl. Phys., 43, 6662 (2004)
- Lim JH, Lee JS, Lee SH, Jung HB, Park CK, Ahn CW, Yoo IR, Cho KH, Jeong DY, Korean J. Mater. Res., 29(4), 205 (2019)
- Ahn CW, Park CS, Choi CH, Nahm S, Yoo MJ, Lee HG, Priya S, J. Am. Ceram. Soc., 92(9), 2033 (2009)
- Wang XP, Wu JG, Xiao DQ, Zhu JG, Cheng XJ, Zheng T, Zhang BY, Lou XJ, Wang XJ, J. Am. Chem. Soc., 136(7), 2905 (2014)
- Ahn CW, Rahman A, Ryu J, Choi JJ, Kim JW, Yoon WH, Hahn BD, Cryst. Growth Des., 16, 6586 (2016)
- Mullin JW, Crystallization, 4th ed., p. 190-195, Elsevier, Oxford (2004).
- Zettlemoyer AC, Nuclation, p. 131-136, Marcell Dekker, New York (1969).