화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.7, 343-349, July, 2020
비납계 (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) 압전 세라믹의 비정상 결정 성장 거동 비교
Comparison of Abnormal Grain Growth Behavior of Lead-Free (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) Piezoelectric Ceramics
E-mail:
NKN [(Na,K)NbO3] is a candidate lead-free piezoelectric material to replace PZT [Pb(Zr,Ti)O3]. A single crystal has excellent piezoelectric-properties and its properties are dependent of the crystal orientation direction. However, it is hard to fabricate a single crystal with stoichiometrically stable composition due to volatilization of sodium during the growth process. To solve this problem, a solid solution composition is designed (Na,K)NbO3-Ba(Cu,Nb)O3 and solid state grain growth is studied for a sizable single crystal. Ceramic powders of (Na,K)NbO3-M(Cu,Nb)O3 (M = Ca, Sr, Ba) are synthesized and grain growth behavior is investigated for different temperatures and times. Average normal grain sizes of individual specimens, which are heat-treated at 1,125 °C for 10 h, are 6.9, 2.8, and 1.6 μm for M = Ca, Sr, and Ba, respectively. Depending on M, the distortion of NKN structure can be altered. XRD results show that (NKN-CaCuN: shrunken orthorhombic; NKN-SrCuN: orthorhombic; NKN-BaCuN: cubic). For the sample heat-treated at 1,125 °C for 10 h, the maximum grain sizes of individual specimens are measured as 40, 5, and 4,000 μm for M = Ca, Sr, and Ba, respectively. This abnormal grain size is related to the partial melting temperature (NKN-CaCuN: 960 °C; NKN-SrCuN: 971 °C; NKN-BaCuN: 945 °C).
  1. Zhang MH, Thong HC, Lu YX, Sun W, Li JF, Wang K, J. Korean Ceram. Soc., 54, 261 (2017)
  2. Wang XP, Wu JG, Xiao DQ, Zhu JG, Cheng XJ, Zheng T, Zhang BY, Lou XJ, Wang XJ, J. Am. Chem. Soc., 136(7), 2905 (2014)
  3. Zhang H, Zhu Y, Fan P, Marwat MA, Ma W, Liu K, Liu H, Xie B, Wang K, Koruza J, Acta Mater., 156, 389 (2018)
  4. Park CK, Kang DK, Lee SH, Kong YM, Jeong DY, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 541 (2017)
  5. Park JH, Park HJ, Choi BC, Korean. J. Mater. Res., 26, 721 (2016)
  6. Lee D, Vu H, Sun H, Pham TL, Nguyen DT, Lee JS, Fisher JG, Ceram. Int., 42, 18894 (2016)
  7. Uwiragiye E, Farooq MU, Moon SH, Pham TL, Nguyen DT, Lee JS, Fisher JG, J. European Ceram. Soc., 37, 4597 (2017)
  8. Han G, Ryu J, Ahn CW, Yoon WH, Choi JJ, Hahn BD, Kim JW, Choi JH, Park DS, J. Am. Ceram. Soc., 95(5), 1489 (2012)
  9. Rahman A, Cho KH, Ahn CW, Ryu J, Choi JJ, Kim JW, Yoon WH, Hahn BD, J. European Ceram. Soc., 38, 1416 (2018)
  10. Ahn CW, Lee HY, Han G, Zhang S, Choi SY, et al., Sci. Rep., 5, 17656 (2015)
  11. Wang HQ, Ruan DS, Dai YJ, Zhang XW, Curr. Appl. Phys., 12(2), 504 (2012)
  12. Uthaisar C, Kantha P, Yimnirun R, Pojprapai S, Integrated Ferroelectrics, 149, 114 (2013)
  13. Guo Y, Kakimoto KI, Ohsato H, Jpn. J. Appl. Phys., 43, 6662 (2004)
  14. Lim JH, Lee JS, Lee SH, Jung HB, Park CK, Ahn CW, Yoo IR, Cho KH, Jeong DY, Korean J. Mater. Res., 29(4), 205 (2019)
  15. Ahn CW, Park CS, Choi CH, Nahm S, Yoo MJ, Lee HG, Priya S, J. Am. Ceram. Soc., 92(9), 2033 (2009)
  16. Wang XP, Wu JG, Xiao DQ, Zhu JG, Cheng XJ, Zheng T, Zhang BY, Lou XJ, Wang XJ, J. Am. Chem. Soc., 136(7), 2905 (2014)
  17. Ahn CW, Rahman A, Ryu J, Choi JJ, Kim JW, Yoon WH, Hahn BD, Cryst. Growth Des., 16, 6586 (2016)
  18. Mullin JW, Crystallization, 4th ed., p. 190-195, Elsevier, Oxford (2004).
  19. Zettlemoyer AC, Nuclation, p. 131-136, Marcell Dekker, New York (1969).