화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.58, No.3, 486-492, June, 2020
졸-겔법으로 제조된 Bismuth ferrite의 가시광 광촉매 특성
Visible Light Photocatalytic Properties of Bismuth Ferrite Prepared By Sol-Gel Method
E-mail:
초록
가시광 LED 빛에 반응하는 페로브스이트형 bismuth ferrite (BFO) 광촉매 제조방법과 가시광 광촉매 반응 특성을 조사하였다. BFO는 졸-겔법에 따라 제조하였다. 제조된 BFO는 주로 BiFeO3 구조로 이루어져 있으며 Bi24Fe2O39 구조도 포함한 나노 크기의 결정을 이루고 있었다. BFO 나노 결정은 약 600 nm까지 자외선과 가시광선을 흡수하는 것을 UV-visible 확산 반사 스펙트럼으로부터 확인하였다. 확산 반사 스펙트럼으로부터 구한 BFO의 밴드갭은 약 2.2 eV로 나타났다. 포름알데히드는 585 nm와 613 nm 파장의 가시광 LED 램프의 빛과 BFO 광촉매와의 광반응에 의하여 분해되어 제거되었다. BFO의 가시광 LED 빛에서 광촉매 활성은 BFO의 좁은 밴드갭에서 기인하는 것으로 보인다.
The method for preparing a perovskite-type bismuth ferrite (BFO) photocatalyst which reacts to visible LED light and the characteristics of visible light photocatalysis were investigated. BFO was prepared according to the sol-gel method. The prepared BFO consisted mainly of BiFeO3 structure and formed a nano-sized crystal including Bi24Fe2O39 structure. The BFO nano crystallines were identified from the UV-visible diffuse reflectance spectra to absorb UV and visible light up to about 600 nm. The bandgap of the BFO determined from the diffuse reflectance spectrum was about 2.2 eV. Formaldehyde was decomposed by the photoreaction of BFO photocatalysts with the visible light LED lamps with wavelengths of 585 nm and 613 nm. The narrow bandgap of BFO led to elicit BFO photocatalytic activity in visible LED light.
  1. Fujishima A, Honda K, Nature, 238, 37 (1972)
  2. Yang XY, Wolcott A, Wang GM, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y, Nano Lett., 9, 2331 (2009)
  3. Wolcott A, Smith WA, Kuykendall TR, Zhao YP, Zhang JZ, Adv. Funct. Mater., 19(12), 1849 (2009)
  4. Zhang ZH, Hossain MF, Takahashi T, Appl. Catal. B: Environ., 95(3-4), 423 (2010)
  5. Weinhardt L, Blum M, Bar M, Heske C, Cole B, Marsen B, Miller EL, J. Phys. Chem. C, 112, 3078 (2008)
  6. Wu HJ, Zhang ZH, Int. J. Hydrog. Energy, 36(21), 13481 (2011)
  7. Tian J, Leng Y, Zhao Z, Xia Y, Sang Y, Hao P, Nano Energy, 11, 419 (2015)
  8. Sharotri N, Sud D, New J. Chem., 39, 2217 (2015)
  9. Sharotri N, Sud D, Desalin. Water Treat., 57, 8776 (2016)
  10. Zhang L, Jing D, She X, Liu H, Yang D, Lu Y, Li J, Zheng Z, Guo L, J. Mater. Chem. A, 2, 2071 (2014)
  11. Zhang M, Shao C, Mu J, Zhang Z, Guo Z, Zhang P, Liu Y, Cryst. Eng. Comm., 14, 605 (2012)
  12. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269 (2001)
  13. Yamashita H, Harada M, Misaka J, Takeuchi M, Ikeue K, Anpo M, J. Photochem. Photobiol. A-Chem., 148, 257 (2002)
  14. Dvoranova D, Brezova V, Mazur M, Malati MA, Appl. Catal. B: Environ., 37(2), 91 (2002)
  15. Kemp TJ, McIntyre RA, Polym. Degrad. Stabil., 91, 165 (2006)
  16. Kapoor PN, Uma S, Rodriguez S, Klabunde KJ, J. Mol. Catal. A-Chem., 229(1-2), 145 (2005)
  17. Rauf MA, Meetani MA, Hisaindee S, Desalination, 276(1-3), 13 (2011)
  18. Jedsukontorn T, Ueno T, Saito N, Hunsom M, J. Alloy. Compd., 757, 188 (2018)
  19. Tokura Y, Seki S, Nagaosa N, Rep. Prog. Phys., 77, 76501 (2014)
  20. Martin LW, Crane SP, Chu YH, Holcomb MB, Gajek M, Huijben M, Yang CH, Balke N, Ramesh R, J. Phys. Condens. Matter, 20, 434220 (2008)
  21. Eerenstein W, Mathur ND, Scott JF, Nature, 442, 759 (2006)
  22. Yi HT, Choi T, Choi SG, Oh YS, Cheong SW, Adv. Mater., 23(30), 3403 (2011)
  23. Ji W, Yao K, Liang YC, Adv. Mater., 22(15), 1763 (2010)
  24. Catalan G, Scott JF, Adv. Mater., 21(24), 2463 (2009)
  25. Yang SY, Martin LW, Byrnes SJ, Conry TE, Basu SR, et al., Appl. Phys. Lett., 95, 062909 (2009)
  26. Li S, Lin YH, Zhang BP, Wang Y, Nan CW, J. Phys. Chem. C, 114, 2903 (2010)
  27. Brody PS, Solid State Commun., 12, 673 (1973)
  28. Ichiki M, Morikawa Y, Nakada T, Jpn. J. Appl. Phys., 41, 6993 (2002)
  29. Gao F, Chen XY, Yin KB, Dong S, Ren ZF, Yuan F, Yu T, Zou Z, Liu JM, Adv. Mater., 19(19), 2889 (2007)
  30. Zhang X, Lv J, Bourgeois L, Cui J, Wu Y, Wang H, Webley PA, New J. Chem., 35, 937 (2011)
  31. Wang X, Lin Y, Zhang ZC, Bian JY, J. Sol-Gel Sci. Technol., 60, 15 (2011)
  32. Guo R, Fang L, Dong W, Zheng F, Shen M, J. Phys. Chem. C, 114, 21390 (2010)
  33. Soltani T, Lee BK, J. Hazard. Mater., 316, 122 (2016)
  34. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
  35. Kubelka P, Munk F, Zeit. Fur. Tech. Phys., 12, 593 (1931)
  36. Vijayasundaram SV, Kanagadurai R, Int. J. Chem.Tech. Res., 8, 436 (2015)
  37. Rao GVS, Rao CNR, Ferraro JR, Appl. Spectrosc., 24, 436 (1970)
  38. Yamaguchi O, Narai A, Komatsu T, Shimizu K, J. Am. Ceram. Soc., 69, 256 (1986)
  39. Yang H, Xian T, Wei ZQ, Dai JF, Jiang JL, Feng WJ, J. Sol-Gel Sci. Technol., 58, 238 (2011)
  40. Hua K, Wang W, Wang Y, Xu J, Jia D, Lu Z, Zhou Y, J. Alloy. Compd., 509, 2192 (2011)
  41. Wang X, Lin Y, Ding XF, Jiang JG, J. Alloy. Compd., 509, 6585 (2011)
  42. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS, Surf. Interface Anal., 36, 1564 (2004)
  43. http://www.lasurface.com/database/elementxps.php.