화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.8, 1371-1378, August, 2020
Porous an hollow nanofibers for solid oxide fuel cell electrodes
E-mail:,
Among the diverse approaches for improving the electrode performance of solid oxide fuel cells operating at intermediate temperatures, the use of nanofiber-based electrodes has provided large improvement owing to their large specific surface area, continuous conduction pathway, and highly porous structure. However, the low thermal stability at increased temperature often limits the process compatibility and sustainability during operation. In this study, we fabricated nanofiber-based electrodes with a high porosity and hollow shape using one-step electrospinning with a hydrogel polymer, which exhibited largely improved performance and excellent thermal stability. A porous-nanofiberbased cell exhibits a polarization resistance of 0.021Ωcm2 and maximum power density of 1.71 W/cm2 at 650 °C, which is an improvement of 34.3% and 14.7% compared to that of a solid-nanofiber-based cell, respectively. Comprehensive analyses of the microstructures and chemistry indicate that the performance increase is mainly attributable to the enhanced surface oxygen exchange reactions owing to the extended reaction sites with lower energy barriers by the high porosity and enriched oxygen vacancies in the nanofibers.
  1. Jeon Y, Myung JH, Hyun SH, Shul YG, Irvine JTS, J. Mater. Chem. A, 5, 3966 (2017)
  2. Chen Y, Bu Y, Zhao B, Zhang Y, Ding D, Hu R, Wei T, Rainwater B, et al., Nano Energy, 26, 90 (2016)
  3. Kim C, Park H, Jang I, Kim S, Kim K, Yoon H, Paik U, J. Power Sources, 378, 404 (2018)
  4. Ahn M, Lee J, Lee W, J. Power Sources, 353, 176 (2017)
  5. Jung JW, Lee CL, Yu S, Kim ID, J. Mater. Chem. A, 4, 703 (2016)
  6. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH, Adv. Mater., 24(15), 2047 (2012)
  7. Khalil A, Kim JJ, Tuller HL, Rutledge GC, Hashaikeh R, Sens. Actuators B-Chem., 227, 54 (2016)
  8. Yang DJ, Kamienchick I, Youn DY, Rothschild A, Kim ID, Adv. Funct. Mater., 20(24), 4258 (2010)
  9. Lee JG, Park JH, Shul YG, Nat. Commun., 5, 4045 (2014)
  10. Ahn M, Han S, Lee J, Lee W, Ceram. Int., 46, 6006 (2020)
  11. Ahn M, Cho J, Lee W, J. Power Sources, 434, 226749 (2019)
  12. Koo JY, Lim Y, Kim YB, Byun D, Lee W, Int. J. Hydrog. Energy, 42(24), 15903 (2017)
  13. Bellino MG, Sacanell JG, Lamas DG, Leyva AG, de Reca NEW, J. Am. Chem. Soc., 129(11), 3066 (2007)
  14. Li J, Zhang N, He Z, Sun K, Wu Z, J. Alloy. Compd., 663, 664 (2016)
  15. Liu P, Zhu Y, Ma J, Yang S, Gong J, Xu J, Colloids Surf. A: Physicochem. Eng. Asp., 436, 489 (2013)
  16. Zhao E, Liu X, Liu L, Huo H, Xiong Y, Pro. Nat. Sci-Mater., 24, 24 (2014)
  17. Murray EP, Sever MJ, Barnett SA, Solid State Ion., 148(1-2), 27 (2002)
  18. Huang SG, Peng CQ, Zong Z, J. Power Sources, 176(1), 102 (2008)
  19. Zhi M, Lee S, Miller N, Menzler NH, Wu N, Energy Environ. Sci., 5, 7066 (2012)
  20. Zhao F, Peng RR, Xia CR, Mater. Res. Bull., 43(2), 370 (2008)
  21. Lee J, Hwang S, Ahn M, Choi M, Han S, Byun D, Lee W, J. Mater. Chem. A, 7, 21120 (2019)
  22. Chang CL, Hsu CS, Huang JB, Hsu PH, Hwang BH, J. Alloy. Compd., 620, 233 (2015)
  23. Zhao E, Jia Z, Liu X, Gao K, Huo H, Xiong Y, Ceram. Int., 40, 14891 (2014)
  24. Koyama M, Wen CJ, Masuyama T, Otomo J, Fukunaga H, Yamada K, Eguchi K, Takahashi H, J. Electrochem. Soc., 148(7), A795 (2001)
  25. Fukunaga MKH, Takahashi N, Wen C, Yamada K, Solid State Ion., 1, 279 (2000)
  26. Choi M, Lee J, Lee W, J. Mater. Chem. A, 6, 11811 (2018)
  27. Koo JY, Hwang S, Ahn M, Choi M, Byun D, Lee W, Lu K, J. Am. Ceram. Soc., 9, 3146 (2016)
  28. Fan L, Wang Y, Jia Z, Xiong Y, Brito ME, Ceram. Int., 41, 6583 (2015)
  29. Du YK, Yang P, Mou ZG, Hua NP, Jiang L, J. Appl. Polym., 99, 23 (2006)
  30. Bigi A, Ripamonti A, Cojazzi G, Pizzuto G, Roveri N, Koch M, Int. J. Biol. Macromol., 13, 110 (1991)
  31. Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y, Energy Environ. Sci., 8/, 1404 (2015)
  32. Lv H, Wu YJ, Huang B, Zhao BY, Hu KA, Solid State Ion., 177(9-10), 901 (2006)
  33. Lee W, Jung HJ, Lee MH, Kim YB, Park JS, Sinclair R, Prinz FB, Adv. Funct. Mater., 22(5), 965 (2012)
  34. Bae J, Lim Y, Park JS, Lee D, Hong S, An J, Kim YB, J. Electrochem. Soc., 163(8), F919 (2016)
  35. Kim YB, Park JS, Gur TM, Prinz FB, J. Power Sources, 196(24), 10550 (2011)
  36. Park JS, An J, Lee MH, Prinz FB, Lee W, J. Power Sources, 295, 75 (2015)
  37. Berenov A, Atkinson A, Kilner J, Ananyev M, Eremin V, Porotnikova N, Farlenkov A, Kurumchin E, Bouwmeester HJM, Bucher E, Sitte W, Solid State Ion., 268, 102 (2014)
  38. Xu XM, Chen YB, Zhou W, Zhu ZH, Su C, Liu ML, Shao ZP, Adv. Mater., 28(30), 6442 (2016)
  39. Liu R, Liang F, Zhou W, Yang Y, Zhu Z, Nano Energy, 12, 115 (2015)
  40. Jung JI, Jeong HY, Kim MG, Nam G, Park J, Cho J, Adv. Mater., 27(2), 266 (2015)
  41. Zhu YL, Zhou W, Chen YB, Yu J, Liu ML, Shao ZP, Adv. Mater., 27(44), 7150 (2015)
  42. Lee SA, Oh S, Hwang JY, Choi M, Youn C, Kim JW, et al., Energy Environ. Sci., 10, 924 (2017)
  43. Xu W, Lyu F, Bai Y, Gao A, Feng J, Cai Z, Yin Y, Nano Energy, 43, 110 (2018)
  44. Banger KK, Yamashita Y, Mori K, Peterson RL, Leedham T, Rickard J, Sirringhaus H, Nat. Mater., 10(1), 45 (2011)
  45. Choi M, Ibrahim IAM, Kim K, Koo JY, Kim SJ, Son JW, Han JW, Lee W, ACS Appl. Mater. Interfaces, 12, 21494 (2020)
  46. Kim SJ, Choi M, Lee J, Lee W, J. European Ceram. Soc., 40, 3089 (2020)
  47. Adler SB, Chem. Rev., 10, 4791 (2004)
  48. Baumann FS, Fleig J, Habermeier HU, Maier J, Solid State Ion., 177(11-12), 1071 (2006)
  49. Chen Y, Bu Y, Zhang Y, Yan R, Ding D, Zhao B, Yoo S, Dang D, Hu R, Yang C, Liu M, Adv. Eng. Mater., 7, 160890 (2017)
  50. Choi M, Hwang S, Kim SJ, Lee J, Byun D, Lee W, ACS Appl. Energy Mater., 2, 4059 (2019)
  51. Baek SW, Bae J, Yoo YS, J. Power Sources, 193(2), 431 (2009)
  52. Lee JG, Park MG, Park JH, Shul YG, Ceram. Int., 40, 8053 (2014)
  53. Muranaka M, Sasaki K, Suzuki A, Terai T, J. Electrochem. Soc., 156(6), B743 (2009)
  54. Yang YL, Jacobson AJ, Chen CL, Luo GP, Ross KD, Chu CW, Appl. Phys. Lett., 79, 776 (2001)