화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.8, 1387-1393, August, 2020
Composition-dependent catalytic activity of bimetallic PtPd dendrimer-encapsulated nanoparticles having an average size of 1.7 nm for hydrolytic dehydrogenation of ammonia borane
E-mail:
We investigated composition-dependent catalytic activity of bimetallic PtPd dendrimer-encapsulated nanoparticles (DENs) that had a uniform size of ~1.7 nm for hydrolytic dehydrogenation of ammonia borane (AB). The PtPd DENs, composed of seven different Pt : Pd ratios, were synthesized using hydroxyl-terminated sixth-generation polyamidoamine dendrimers as a molecular template. The dendrimer-templating method allowed for synthesizing bimetallic PtPd DENs with controllable nanoparticle composition while fixing the size of the nanoparticles uniformly at ~1.7 nm. Compared with monometallic Pt and Pd DENs, the bimetallic PtPd DENs showed superior catalytic activity for the hydrolytic dehydrogenation of AB. Furthermore, the bimetallic PtPd DENs exhibited composition-dependent activity with the maximum activity (i.e., average turnover frequency=108.5 ± 15.9mol H2ㆍmol atomPt+Pd -1ㆍmin-1) at a Pt : Pd ratio of 1 : 1 for the catalytic hydrolysis of AB.
  1. Stephens FH, Pons V, Baker RT, Dalton Trans., 25, 2613 (2007)
  2. Smythe NC, Gordon JC, Eur. J. Inorg. Chem., 2010, 509 (2010)
  3. Hamilton CW, Baker RT, Staubitz A, Manners I, Chem. Soc. Rev., 38, 279 (2009)
  4. Jiang HL, Xu Q, Catal. Today, 170(1), 56 (2011)
  5. Xu Q, Chandra M, J. Alloy. Compd., 446-447, 729 (2007)
  6. Zhan WW, Zhu QL, Xu Q, ACS Catal., 6, 6892 (2016)
  7. Sun D, Mazumder V, Metin O, Sun S, ACS Nano, 2, 6458 (2011)
  8. Lu ZH, Li JP, Zhu AL, Yao QL, Huang W, Zhou RY, Zhou RF, Chen XS, Int. J. Hydrog. Energy, 38(13), 5330 (2013)
  9. Dai HM, Su J, Hu K, Luo W, Cheng GZ, Int. J. Hydrog. Energy, 39(10), 4947 (2014)
  10. Peng X, Pan Q, Rempel GL, Chem. Soc. Rev., 37, 1619 (2008)
  11. Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ, Chem. Soc. Rev., 41, 8099 (2012)
  12. Tao F, Chem. Soc. Rev., 41, 7977 (2012)
  13. Wang AQ, Liu XY, Mou CY, Zhang T, J. Catal., 308, 258 (2013)
  14. Rakap M, J. Power Sources, 276, 320 (2015)
  15. Zhang Z, Jiang Y, Chi M, Yang Z, Wang C, Lu X, RSC Adv., 5, 94456 (2015)
  16. Amali AJ, Aranishi K, Uchida T, Xu Q, Part. Part. Syst. Charact., 30(10), 888 (2013)
  17. Yao K, Zhao C, Wang N, Li T, Lu W, Wang J, Nanoscale, 12, 638 (2020)
  18. Wang Z, Zhang H, Chen L, Miao S, Wu S, Hao X, Zhang W, Jia M, J. Phys. Chem. C, 122, 12975 (2018)
  19. Zhao MQ, Sun L, Crooks RM, J. Am. Chem. Soc., 120(19), 4877 (1998)
  20. Balogh L, Tomalia DA, J. Am. Chem. Soc., 120(29), 7355 (1998)
  21. Scott RWJ, Wilson OM, Crooks RM, J. Phys. Chem. B, 109(2), 692 (2005)
  22. Zhao M, Crooks RM, Angew. Chem.-Int. Edit., 38, 364 (1999)
  23. Zhao MQ, Crooks RM, Adv. Mater., 11(3), 217 (1999)
  24. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK, Accounts Chem. Res., 34, 181 (2001)
  25. Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM, Chem. Sci., 2, 1632 (2011)
  26. Niu YH, Yeung LK, Crooks RM, J. Am. Chem. Soc., 123(28), 6840 (2001)
  27. Ooe M, Murata M, Mizugaki T, Ebitani K, Kaneda K, Nano Lett., 2, 999 (2002)
  28. Deraedt C, Ye R, Ralston WT, Toste FD, Somorjai GK, J. Am. Chem. Soc., 139(49), 18084 (2017)
  29. Ke DD, Li Y, Wang J, Zhang L, Wang JD, Zhao X, Yang SQ, Han SM, Int. J. Hydrog. Energy, 41(4), 2564 (2016)
  30. Esumi K, Isono R, Yoshimura T, Langmuir, 20(1), 237 (2004)
  31. Ye HC, Crooks RM, J. Am. Chem. Soc., 127(13), 4930 (2005)
  32. Ooe M, Murata M, Mizugaki T, Ebitani K, Kaneda K, J. Am. Chem. Soc., 126(6), 1604 (2004)
  33. Li Y, El-Sayed MA, J. Phys. Chem. B, 105(37), 8938 (2001)
  34. Garcia-Martinez JC, Lezutekong R, Crooks RM, J. Am. Chem. Soc., 127(14), 5097 (2005)
  35. Cho T, Yoon CW, Kim J, Langmuir, 34(25), 7436 (2018)
  36. Lim H, Ju Y, Kim J, Anal. Chem., 88, 4751 (2016)
  37. Yamamoto K, Imaoka T, Chun WJ, Enoki O, Katoh H, Takenaga M, Sonoi A, Nat. Chem., 1, 397 (2009)
  38. Ye HC, Crooks RM, J. Am. Chem. Soc., 129(12), 3627 (2007)
  39. Chung YM, Rhee HK, Catal. Lett., 85(3-4), 159 (2003)
  40. Chung YM, Rhee HK, Catal. Surv. from Asia, 8, 211 (2004)
  41. Aranishi K, Singh AK, Xu Q, ChemCatChem, 5, 2248 (2013)
  42. Scott RWJ, Datye AK, Crooks RM, J. Am. Chem. Soc., 125(13), 3708 (2003)
  43. Ju Y, Kim J, Chem. Commun., 51, 13752 (2015)
  44. Ye H, Crooks JA, Crooks RM, Langmuir, 23(23), 11901 (2007)
  45. Bertolini JC, Appl. Catal. A: Gen., 191(1-2), 15 (2000)
  46. Scott RWJ, Sivadinarayana C, Wilson OM, Yan Z, Goodman DW, Crooks RM, J. Am. Chem. Soc., 127(5), 1380 (2005)
  47. Lewis EA, Slater TJA, Prestat E, Macedo A, O'Brien P, Camargo PHC, Haigh SJ, Nanoscale, 6, 13598 (2014)
  48. Wang CM, Genc A, Cheng H, Pullan L, Baer DR, Bruemmer SM, Sci. Rep., 4, 3683 (2014)
  49. Davey WP, Phys. Rev., 25, 753 (1925)
  50. Wu J, Shan S, Cronk H, Chang F, Kareem H, Zhao Y, Luo J, Petkov V, Zhong CJ, J. Phys. Chem. C, 121, 14128 (2017)
  51. Zhang H, Jin M, Liu H, Wang J, Kim MJ, Yang D, Xie Z, Liu J, Xia Y, ACS Nano, 5, 8212 (2011)
  52. Chandra M, Xu Q, J. Power Sources, 156(2), 190 (2006)