Korean Journal of Chemical Engineering, Vol.37, No.8, 1387-1393, August, 2020
Composition-dependent catalytic activity of bimetallic PtPd dendrimer-encapsulated nanoparticles having an average size of 1.7 nm for hydrolytic dehydrogenation of ammonia borane
E-mail:
We investigated composition-dependent catalytic activity of bimetallic PtPd dendrimer-encapsulated nanoparticles (DENs) that had a uniform size of ~1.7 nm for hydrolytic dehydrogenation of ammonia borane (AB). The PtPd DENs, composed of seven different Pt : Pd ratios, were synthesized using hydroxyl-terminated sixth-generation polyamidoamine dendrimers as a molecular template. The dendrimer-templating method allowed for synthesizing bimetallic PtPd DENs with controllable nanoparticle composition while fixing the size of the nanoparticles uniformly at ~1.7 nm. Compared with monometallic Pt and Pd DENs, the bimetallic PtPd DENs showed superior catalytic activity for the hydrolytic dehydrogenation of AB. Furthermore, the bimetallic PtPd DENs exhibited composition-dependent activity with the maximum activity (i.e., average turnover frequency=108.5 ± 15.9mol H2ㆍmol atomPt+Pd
-1ㆍmin-1) at a Pt : Pd ratio of 1 : 1 for the catalytic hydrolysis of AB.
Keywords:Dendrimer-encapsulated Nanoparticle (DEN);Hydrolytic Dehydrogenation;Ammonia Borane;Bimetallic PtPd Nanoparticles;Composition-dependent Catalysis
- Stephens FH, Pons V, Baker RT, Dalton Trans., 25, 2613 (2007)
- Smythe NC, Gordon JC, Eur. J. Inorg. Chem., 2010, 509 (2010)
- Hamilton CW, Baker RT, Staubitz A, Manners I, Chem. Soc. Rev., 38, 279 (2009)
- Jiang HL, Xu Q, Catal. Today, 170(1), 56 (2011)
- Xu Q, Chandra M, J. Alloy. Compd., 446-447, 729 (2007)
- Zhan WW, Zhu QL, Xu Q, ACS Catal., 6, 6892 (2016)
- Sun D, Mazumder V, Metin O, Sun S, ACS Nano, 2, 6458 (2011)
- Lu ZH, Li JP, Zhu AL, Yao QL, Huang W, Zhou RY, Zhou RF, Chen XS, Int. J. Hydrog. Energy, 38(13), 5330 (2013)
- Dai HM, Su J, Hu K, Luo W, Cheng GZ, Int. J. Hydrog. Energy, 39(10), 4947 (2014)
- Peng X, Pan Q, Rempel GL, Chem. Soc. Rev., 37, 1619 (2008)
- Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ, Chem. Soc. Rev., 41, 8099 (2012)
- Tao F, Chem. Soc. Rev., 41, 7977 (2012)
- Wang AQ, Liu XY, Mou CY, Zhang T, J. Catal., 308, 258 (2013)
- Rakap M, J. Power Sources, 276, 320 (2015)
- Zhang Z, Jiang Y, Chi M, Yang Z, Wang C, Lu X, RSC Adv., 5, 94456 (2015)
- Amali AJ, Aranishi K, Uchida T, Xu Q, Part. Part. Syst. Charact., 30(10), 888 (2013)
- Yao K, Zhao C, Wang N, Li T, Lu W, Wang J, Nanoscale, 12, 638 (2020)
- Wang Z, Zhang H, Chen L, Miao S, Wu S, Hao X, Zhang W, Jia M, J. Phys. Chem. C, 122, 12975 (2018)
- Zhao MQ, Sun L, Crooks RM, J. Am. Chem. Soc., 120(19), 4877 (1998)
- Balogh L, Tomalia DA, J. Am. Chem. Soc., 120(29), 7355 (1998)
- Scott RWJ, Wilson OM, Crooks RM, J. Phys. Chem. B, 109(2), 692 (2005)
- Zhao M, Crooks RM, Angew. Chem.-Int. Edit., 38, 364 (1999)
- Zhao MQ, Crooks RM, Adv. Mater., 11(3), 217 (1999)
- Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK, Accounts Chem. Res., 34, 181 (2001)
- Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM, Chem. Sci., 2, 1632 (2011)
- Niu YH, Yeung LK, Crooks RM, J. Am. Chem. Soc., 123(28), 6840 (2001)
- Ooe M, Murata M, Mizugaki T, Ebitani K, Kaneda K, Nano Lett., 2, 999 (2002)
- Deraedt C, Ye R, Ralston WT, Toste FD, Somorjai GK, J. Am. Chem. Soc., 139(49), 18084 (2017)
- Ke DD, Li Y, Wang J, Zhang L, Wang JD, Zhao X, Yang SQ, Han SM, Int. J. Hydrog. Energy, 41(4), 2564 (2016)
- Esumi K, Isono R, Yoshimura T, Langmuir, 20(1), 237 (2004)
- Ye HC, Crooks RM, J. Am. Chem. Soc., 127(13), 4930 (2005)
- Ooe M, Murata M, Mizugaki T, Ebitani K, Kaneda K, J. Am. Chem. Soc., 126(6), 1604 (2004)
- Li Y, El-Sayed MA, J. Phys. Chem. B, 105(37), 8938 (2001)
- Garcia-Martinez JC, Lezutekong R, Crooks RM, J. Am. Chem. Soc., 127(14), 5097 (2005)
- Cho T, Yoon CW, Kim J, Langmuir, 34(25), 7436 (2018)
- Lim H, Ju Y, Kim J, Anal. Chem., 88, 4751 (2016)
- Yamamoto K, Imaoka T, Chun WJ, Enoki O, Katoh H, Takenaga M, Sonoi A, Nat. Chem., 1, 397 (2009)
- Ye HC, Crooks RM, J. Am. Chem. Soc., 129(12), 3627 (2007)
- Chung YM, Rhee HK, Catal. Lett., 85(3-4), 159 (2003)
- Chung YM, Rhee HK, Catal. Surv. from Asia, 8, 211 (2004)
- Aranishi K, Singh AK, Xu Q, ChemCatChem, 5, 2248 (2013)
- Scott RWJ, Datye AK, Crooks RM, J. Am. Chem. Soc., 125(13), 3708 (2003)
- Ju Y, Kim J, Chem. Commun., 51, 13752 (2015)
- Ye H, Crooks JA, Crooks RM, Langmuir, 23(23), 11901 (2007)
- Bertolini JC, Appl. Catal. A: Gen., 191(1-2), 15 (2000)
- Scott RWJ, Sivadinarayana C, Wilson OM, Yan Z, Goodman DW, Crooks RM, J. Am. Chem. Soc., 127(5), 1380 (2005)
- Lewis EA, Slater TJA, Prestat E, Macedo A, O'Brien P, Camargo PHC, Haigh SJ, Nanoscale, 6, 13598 (2014)
- Wang CM, Genc A, Cheng H, Pullan L, Baer DR, Bruemmer SM, Sci. Rep., 4, 3683 (2014)
- Davey WP, Phys. Rev., 25, 753 (1925)
- Wu J, Shan S, Cronk H, Chang F, Kareem H, Zhao Y, Luo J, Petkov V, Zhong CJ, J. Phys. Chem. C, 121, 14128 (2017)
- Zhang H, Jin M, Liu H, Wang J, Kim MJ, Yang D, Xie Z, Liu J, Xia Y, ACS Nano, 5, 8212 (2011)
- Chandra M, Xu Q, J. Power Sources, 156(2), 190 (2006)