Korean Journal of Chemical Engineering, Vol.37, No.8, 1411-1418, August, 2020
Hybrid Pd38 nanocluster/Ni(OH)2-graphene catalyst for enhanced HCOOH dehydrogenation: First principles approach
E-mail:,
Hydrogen energy is a potential next-generation energy source for fossil fuel replacement. The development of high-efficiency materials and catalysts for storage and transportation of hydrogen energy must be achieved to realize hydrogen economy. Recently, catalyst systems such as Pd nanoclusters (Pd NCs) supported on nickel hydroxide (Ni(OH)2) have been reported to have advantages, including effective suppression of CO production and efficiency enhancement of HCOOH dehydrogenation. However, the reaction mechanism and multi-metallic interface system design of such systems have not been elucidated. Therefore, various Ni(OH)2 surfaces supported on a graphene system were designed through density functional theory calculations, and the support material was combined with Pd38NC (Pd38NC/Ni(OH)2-G). Subsequently, the adsorption behavior of HCOOH dehydrogenation intermediates was analyzed. We found a new adsorption configuration in which HCOOH* (where * and a single underline indicates the adsorbed species and adsorbed atom, respectively) was adsorbed in a more stable manner (adsorption energy, Eads= -1.22 eV) on the system than HCOOH* (Eads=-1.10 eV) owing to the presence of Ni(OH)2-G. This affected the next step in HCOOH dehydrogenation, i.e., formation of HCOO* species, and showed a positive effect on the HCOOH dehydrogenation. To fundamentally understand this phenomenon, electronic structure (d-band center and density of states) and stability (vacancy formation energy) analyses were performed.
Keywords:Formic Acid Dehydrogenation;Hydrogen Energy;Nickel Hydroxide;Density Functional Theory;Surface Stability
- Yang J, Sudik A, Wolverton C, Siegel DJ, Chem. Soc. Rev., 39, 656 (2010)
- Grasemann M, Laurenczy G, Energy Environ. Sci., 5, 8171 (2012)
- Singh AK, Singh S, Kumar A, Catal. Sci. Technol., 6, 12 (2016)
- Boddien A, Loges B, Gartner F, Torborg C, Fumino K, Junge H, Ludwig R, Beller M, J. Am. Chem. Soc., 132(26), 8924 (2010)
- Mellmann D, Sponholz P, Junge H, Beller M, Chem. Soc. Rev., 45, 3954 (2016)
- Herron JA, Scaranto J, Ferrin P, Li S, Mavrikakis M, ACS Catal., 4, 4434 (2014)
- Bulushev DA, Beloshapkin S, Ross JRH, Catal. Today, 154(1-2), 7 (2010)
- Hattori M, Einaga H, Daio T, Tsuji M, J. Mater. Chem. A, 3, 4453 (2015)
- Huang Y, Zhou X, Yin M, Liu C, Xing W, Chem. Mater., 22, 5122 (2010)
- Chen GX, Zhao Y, Fu G, Duchesne PN, Gu L, Zheng YP, Weng XF, Chen MS, Zhang P, Pao CW, Lee JF, Zheng NF, Science, 344(6183), 495 (2014)
- Subbaraman R, Tripkovic D, Strmcnik D, Chang KC, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM, Science, 334(6060), 1256 (2011)
- Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM, Nat. Mater., 11(6), 550 (2012)
- Huang W,Wang H, Zhou J, Wang J, Duchesne PN, Muir D, et al., Nat. Commun., 6, 10035 (2015)
- Yan JM, Wang ZL, Gu L, Li SJ, Wang HL, Zheng WT, Jiang Q, Adv. Eng. Mater., 5, 150010 (2015)
- Sun Q, Wang N, Bing Q, Si R, Liu J, Bai R, Zhang P, Jia M, Yu J, Chem., 3, 477 (2017)
- Kou R, Shao YY, Mei DH, Nie ZM, Wang DH, Wang CM, Viswanathan VV, Park S, Aksay IA, Lin YH, Wang Y, Liu J, J. Am. Chem. Soc., 133(8), 2541 (2011)
- Jafri RI, Rajalakshmi N, Ramaprabhu S, J. Mater. Chem., 20, 7114 (2010)
- Dong L, Gari RRS, Li Z, Craig MM, Hou S, Carbon, 48, 781 (2010)
- Allen MJ, Tung VC, Kaner RB, Chem. Rev., 110(1), 132 (2010)
- Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666 (2004)
- Lim DH, Negreira AS, Wilcox J, J. Phys. Chem. C, 115, 8961 (2011)
- Lim DH, Wilcox J, J. Phys. Chem. C, 115, 22742 (2011)
- Lim DH, Jo JH, Shin DY, Wilcox J, Ham HC, Nam SW, Nanoscale, 6, 5087 (2014)
- Shin DY, Kim MS, Kwon JA, Shin YJ, Yoon CW, Lim DH, J. Phys. Chem. C, 123, 1539 (2019)
- Wang HL, Casalongue HS, Liang YY, Dai HJ, J. Am. Chem. Soc., 132(21), 7472 (2010)
- Kresse G, Furthmuller J, Phys. Rev. B, 54, 11169 (1996)
- Kresse G, Joubert D, Phys. Rev. B, 59, 1758 (1999)
- Blochl PE, Phys. Rev. B, 50, 17953 (1994)
- Perdew JP, Burke K, Ernzerhof M, Phys. Rev. Lett., 77, 3865 (1996)
- Monkhorst HJ, Pack JD, Phys. Rev. B, 13, 5188 (1976)
- Methfessel M, Paxton AT, Phys. Rev. B, 40, 3616 (1989)
- Tkalych AJ, Yu K, Carter EA, J. Phys. Chem. C, 119, 24315 (2015)
- Grimme S, J. Comput. Chem., 27, 1787 (2006)
- Sakurai M, Watanabe K, Sumiyama K, Suzuki K, J. Chem. Phys., 111(1), 235 (1999)
- Dyall KG, Theoretical Chemistry Accounts, 117, 459 (2007)
- Howalt JG, Bligaard T, Rossmeisl J, Vegge T, Phys. Chem. Chem. Phys., 15, 7785 (2013)
- Kazimirov VY, Smirnov MB, Bourgeois L, Guerlou-Demourgues L, Servant L, Balagurov AM, Natkaniec I, Khasanova NR, Antipov EV, Solid State Ion., 181(39-40), 1764 (2010)
- Mukhopadhyay G, Behera H, arXiv:1306.0809 (2013).
- Yan J, Wang Q, Wei T, Fan Z, Adv. Eng. Mater., 4, 130081 (2014)
- Wu Z, Huang XL, Wang ZL, Xu JJ, Wang HG, Zhang XB, Sci. Rep., 4, 3669 (2014)
- Qi Y, Liu Y, Zhu R, Wang Q, Luo Y, Zhu C, Lyu Y, New J. Chem., 43, 3091 (2019)
- Yoo JS, Abild-Pedersen F, Nørskov JK, Studt F, ACS Catal., 4, 1226 (2014)
- Wang P, Steinmann SN, Fu G, Michel C, Sautet P, ACS Catal., 7, 1955 (2017)
- Xu H, Chu W, Sun W, Jiang C, Liu Z, RSC Adv., 6, 96545 (2016)
- Hammer B, Nørskov JK, Surf. Sci., 343, 211 (1995)
- Hammer B, Nørskov JK, Adv. Catal., 45, 71 (2000)
- Vojvodic A, Nørskov J, Abild-Pedersen F, Top. Catal., 57, 25 (2014)