화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.8, 1436-1439, August, 2020
Ultra-fast fabrication of anode-supported solid oxide fuel cells via microwave-assisted sintering technology
E-mail:
We demonstrate ultra-fast fabrication of anode-supported solid oxide fuel cells (SOFCs) using microwaveassisted sintering technology. Due to the nature of microwaves that transfers heat directly into the material, the SOFC sintering process was completed within 8 h, ~ six times faster compared to a conventional sintering process (~47 h). Despite extremely rapid processing time, the microstructure of the SOFC fabricated by microwave-assisted sintering (M-SOFC) was almost identical to that of the conventionally sintered SOFC. Moreover, the electrochemical performance of the M-SOFC at 750 °C was 0.52 W/cm2 in peak power density, which is even higher than that of the conventionally sintered sample (0.49W/cm2). Thus, our results demonstrate that the ultra-fast microwave-assisted sintering process is a highly effective and practically promising technology for fabricating high performance SOFCs.
  1. Wachsman ED, Lee KT, Science, 334(6058), 935 (2011)
  2. Lee KT, Yoon HS, Wachsman ED, J. Mater. Res., 27(16), 2063 (2012)
  3. Myung JH, Neagu D, Miller DN, Irvine JTS, Nature, 537(7621), 528 (2016)
  4. Wachsman ED, Marlowe CA, Lee KT, Energy Environ. Sci., 5(2), 5498 (2012)
  5. Steele BC, Heinzel A, Nature, 414, 345 (2001)
  6. Joh DW, Park JH, Kim D, Wachsman ED, Lee KT, ACS Appl. Mater. Interfaces, 9(10), 8443 (2017)
  7. Park JH, Bae KT, Kim KT, Joh DW, Kim D, Myung JH, Lee KT, Ceram. Int., 45(9), 12154 (2019)
  8. Kim J, Ahn J, Shin J, Yoon KJ, Son JW, Lee JH, Shin D, Lee HW, Ji HI, J. Mater. Chem. A, 7(16), 9958 (2019)
  9. Zhang YH, Huang XQ, Lu Z, Liu ZG, Ge XD, Xu JH, Xin XS, Sha XQ, Su WH, J. Am. Ceram. Soc., 89(7), 2304 (2006)
  10. Fowler DE, Messner AC, Miller EC, Slone BW, Barnett SA, Poeppelmeier KR, Chem. Mater., 27(10), 3683 (2015)
  11. Thaheem I, Joh DW, Noh T, Lee KT, Int. J. Hydrog. Energy, 44(8), 4293 (2019)
  12. Kim D, Park JW, Yun BH, Park JH, Lee KT, ACS Appl. Mater. Interfaces, 11(35), 31786 (2019)
  13. Kim KJ, Rath MK, Kwak HH, Kim HJ, Han JW, Hong ST, Lee KT, ACS Catal., 9(2), 1172 (2019)
  14. Balaji T, Govindaiah R, Sharma M, Purushotham Y, Kumar A, Prakash T, Mater. Lett., 56(4), 560 (2002)
  15. Camaratta R, Lima ANC, Reyes MD, Hernandez-Fenollosa MA, Messana JO, Bergmann CP, Mater. Res. Bull., 48(4), 1569 (2013)
  16. Xie Z, Yang J, Huang X, Huang Y, J. European Ceram. Soc., 19(3), 381 (1999)
  17. Fujitsu S, Ikegami M, Hayashi T, J. Am. Ceram. Soc., 83(8), 2085 (2000)
  18. Jiao ZJ, Shikazono N, Kasagi N, J. Power Sources, 196(13), 5490 (2011)
  19. Jiao ZJ, Shikazono N, Kasagi N, J. Power Sources, 195(24), 8019 (2010)
  20. Gondolini A, Mercadelli E, Sanson A, Albonetti S, Doubova L, Boldrini S, Ceram. Int., 37(4), 1423 (2011)
  21. Seyednezhad M, Rajabi A, Muchtar A, Somalu MR, Ceram. Int., 41(4), 5663 (2015)
  22. Jiao ZJ, Shikazono N, Kasagi N, J. Power Sources, 195(1), 151 (2010)
  23. Leonide A, Sonn V, Weber A, Ivers-Tiffee E, J. Electrochem. Soc., 155, B36 (2007)
  24. Gansor P, Sabolsky K, Zondlo JW, Sabolsky EM, Mater. Lett., 105, 80 (2013)