Korean Journal of Chemical Engineering, Vol.37, No.8, 1436-1439, August, 2020
Ultra-fast fabrication of anode-supported solid oxide fuel cells via microwave-assisted sintering technology
E-mail:
We demonstrate ultra-fast fabrication of anode-supported solid oxide fuel cells (SOFCs) using microwaveassisted sintering technology. Due to the nature of microwaves that transfers heat directly into the material, the SOFC sintering process was completed within 8 h, ~ six times faster compared to a conventional sintering process (~47 h). Despite extremely rapid processing time, the microstructure of the SOFC fabricated by microwave-assisted sintering (M-SOFC) was almost identical to that of the conventionally sintered SOFC. Moreover, the electrochemical performance of the M-SOFC at 750 °C was 0.52 W/cm2 in peak power density, which is even higher than that of the conventionally sintered sample (0.49W/cm2). Thus, our results demonstrate that the ultra-fast microwave-assisted sintering process is a highly effective and practically promising technology for fabricating high performance SOFCs.
Keywords:Solid Oxide Fuel Cells;Microwave-assisted Sintering;Anode Support;Ultra-fast Fabrication;Electrochemical Performance
- Wachsman ED, Lee KT, Science, 334(6058), 935 (2011)
- Lee KT, Yoon HS, Wachsman ED, J. Mater. Res., 27(16), 2063 (2012)
- Myung JH, Neagu D, Miller DN, Irvine JTS, Nature, 537(7621), 528 (2016)
- Wachsman ED, Marlowe CA, Lee KT, Energy Environ. Sci., 5(2), 5498 (2012)
- Steele BC, Heinzel A, Nature, 414, 345 (2001)
- Joh DW, Park JH, Kim D, Wachsman ED, Lee KT, ACS Appl. Mater. Interfaces, 9(10), 8443 (2017)
- Park JH, Bae KT, Kim KT, Joh DW, Kim D, Myung JH, Lee KT, Ceram. Int., 45(9), 12154 (2019)
- Kim J, Ahn J, Shin J, Yoon KJ, Son JW, Lee JH, Shin D, Lee HW, Ji HI, J. Mater. Chem. A, 7(16), 9958 (2019)
- Zhang YH, Huang XQ, Lu Z, Liu ZG, Ge XD, Xu JH, Xin XS, Sha XQ, Su WH, J. Am. Ceram. Soc., 89(7), 2304 (2006)
- Fowler DE, Messner AC, Miller EC, Slone BW, Barnett SA, Poeppelmeier KR, Chem. Mater., 27(10), 3683 (2015)
- Thaheem I, Joh DW, Noh T, Lee KT, Int. J. Hydrog. Energy, 44(8), 4293 (2019)
- Kim D, Park JW, Yun BH, Park JH, Lee KT, ACS Appl. Mater. Interfaces, 11(35), 31786 (2019)
- Kim KJ, Rath MK, Kwak HH, Kim HJ, Han JW, Hong ST, Lee KT, ACS Catal., 9(2), 1172 (2019)
- Balaji T, Govindaiah R, Sharma M, Purushotham Y, Kumar A, Prakash T, Mater. Lett., 56(4), 560 (2002)
- Camaratta R, Lima ANC, Reyes MD, Hernandez-Fenollosa MA, Messana JO, Bergmann CP, Mater. Res. Bull., 48(4), 1569 (2013)
- Xie Z, Yang J, Huang X, Huang Y, J. European Ceram. Soc., 19(3), 381 (1999)
- Fujitsu S, Ikegami M, Hayashi T, J. Am. Ceram. Soc., 83(8), 2085 (2000)
- Jiao ZJ, Shikazono N, Kasagi N, J. Power Sources, 196(13), 5490 (2011)
- Jiao ZJ, Shikazono N, Kasagi N, J. Power Sources, 195(24), 8019 (2010)
- Gondolini A, Mercadelli E, Sanson A, Albonetti S, Doubova L, Boldrini S, Ceram. Int., 37(4), 1423 (2011)
- Seyednezhad M, Rajabi A, Muchtar A, Somalu MR, Ceram. Int., 41(4), 5663 (2015)
- Jiao ZJ, Shikazono N, Kasagi N, J. Power Sources, 195(1), 151 (2010)
- Leonide A, Sonn V, Weber A, Ivers-Tiffee E, J. Electrochem. Soc., 155, B36 (2007)
- Gansor P, Sabolsky K, Zondlo JW, Sabolsky EM, Mater. Lett., 105, 80 (2013)