화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.8, 782-788, July, 2020
Solution-Processed Flexible Gas Barrier Films for Organic Field-Effect Transistors
E-mail:, ,
The solution-processed gas barrier film was fabricated and used for organic field-effect transistors (OFETs). Organic-inorganic hybrid sol-gel materials and cyclic transparent optical polymer (CYTOP) were used as the bottom and top layers of the barrier films, respectively, to effectively protect against gas permeation through the barrier films. The organic-inorganic hybrid material includes sol-gel precursors and amphiphilic polymers. The conventional sol-gel precursors form siloxane bonds by sol-gel reaction and form densely-packed rigid part in thin films. The alkoxysilane-functionalized amphiphilic polymer in the sol-gel precursor solutions has two hydrophobic segments and a hydrophilic segment. The amphiphilic polymer with reactive alkoxysilane groups at both ends of the hydrophobic segments can be involved in the sol-gel reaction, and they can act as surfactants to surround the conventional precursors stabilizing the nanoparticles formed by the hydrolytic condensation reaction of precursors. The amphiphilic polymer also provides flexibility for hybrid sol-gel thin films. CYTOP was used to introduce hydrophobicity on top of the organic-inorganic hybrid thin films. The barrier films containing the organic-inorganic hybrid and hydrophobic CYTOP layers were applied to OFETs and exhibited notable gas barrier properties, high transparency, and flexibility. The encapsulated OFETs with 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) as an organic semiconductor showed a slight decrease in hole mobility from 0.13 to 0.11 cm2 V-1 s-1, while the OFETs without barrier films showed a mobility decrease from 0.11 to 0.03 cm2 V-1 s-1.
  1. Cheng P, Li G, Zhan X, Yang Y, Nat. Photonics, 12, 131 (2018)
  2. Lee Y, Oh JY, Xu W, Kim O, Kim TR, Kang J, Kim Y, Son D, Tok JBH, et al., Sci. Adv., 4, eaat73 (2018)
  3. Guo X, Xu Y, Ogier S, Ng TN, Caironi M, Perinot A, Li L, Zhao J, et al., IEEE Trans. Electron Devices, 64, 1906 (2017)
  4. Jeon H, Park S, Nam S, Shin K, Kim SR, Kim SH, Jang J, An TK, Chin. J. Chem., 34, 1103 (2016)
  5. Park S, Yun WM, Kim LH, Park S, Kim SH, Park CE, Org. Electron., 14, 3385 (2013)
  6. O'Connor TF, Zaretski AV, Savagatrup S, Printz AD, Wilkes CD, Diaz MI, Sawyer EJ, Lipomi DJ, Sol. Energy Mater. Sol. Cells, 144, 438 (2016)
  7. Giannouli M, Drakonakis VM, Savva A, Eleftheriou P, Florides G, Choulis SA, ChemphysChem, 16, 1134 (2015)
  8. Wang L, Yan D, Shaffer DW, Ye X, Layne BH, Concepcion Liu M, Nam CY, Chem. Mater., 30, 324 (2018)
  9. Ogier SD, Matsui H, Feng L, Simms M, Mashayekhi M, Carrabina J, Teres L, Tokito S, Org. Electron., 54, 40 (2018)
  10. Shu Z, Kemper F, Beckert E, Eberhardt R, Tunnermann A, Mater Today Proc., 4, 5039 (2017)
  11. Garner S, Chowdhury D, Lewis S, Information Display, 35, 9 (2019)
  12. Zhou H, Kim JH, Kim KH, Han CS, Park JC, Park JW, J. Nanosci. Nanotechnol., 16, 11569 (2016)
  13. Yu D, Yang YQ, Chen Z, Tao Y, Liu YF, Opt. Commun., 362, 43 (2016)
  14. Wu J, Fei F, Wei C, Chen X, Nie S, Zhang D, Su W, Chi Z, RSC Adv., 8, 5721 (2018)
  15. Kwon JH, Jeong EG, Jeon Y, Kim DG, Lee S, Choi KC, ACS Appl. Mater. Interfaces, 11, 3251 (2019)
  16. Jang JH, Kim N, Li XL, An TK, Kim J, Kim SH, Appl. Surf. Sci., 475, 926 (2019)
  17. Park S, Jeong YJ, Baek Y, Kim LH, Jang JH, Kim Y, An TK, Nam S, Kim SH, Jang J, Park CE, Appl. Surf. Sci., 414, 262 (2017)
  18. Alvarez D, Collazo A, Perez C, Surf. Coat. Technol., 321, 108 (2017)
  19. Shimizu T, Kanamori K, Maeno A, Kaji H, Doherty CM, Nakanishi K, Langmuir, 33(18), 4543 (2017)
  20. Baek Y, Li X, Kim N, Park CE, An TK, Kim J, Kim SH, J. Mater. Chem. C, 7, 11612 (2019)
  21. Kim NH, Li X, Kim SH, Kim JY, J. Ind. Eng. Chem., 68, 209 (2018)
  22. Duan P, Yan C, Luo W, Zhou W, Mater. Lett., 164, 172 (2016)
  23. Chen H, Kong L, Wang Y, J. Membr. Sci., 487, 109 (2015)
  24. Park S, Kim LH, Jeong YJ, Kim K, Park M, Baek Y, An TK, Nam S, Jang J, Park CE, Org. Electron., 36, 133 (2016)
  25. Li X, Kim K, Oh H, Moon HC, Nam S, Kim SH, Org. Electron., 69, 190 (2019)
  26. Seco AM, Goncalves MC, Almeida RM, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 76, 193 (2000)
  27. Shen Y, Yamazaki T, Liu Z, Meng D, Kikuta T, Nakatani N, Thin Solid Films, 517(6), 2069 (2009)
  28. Wang SS, Zhang L, Long C, Li AM, J. Colloid Interface Sci., 428, 185 (2014)
  29. Park S, Nam S, Kim L, Park M, Kim J, An TK, Yun WM, Jang J, Hwang J, Park CE, Org. Electron., 13, 2786 (2012)
  30. Tsukagoshi K, Tanabe J, Yagi I, Shigeto K, Yanagisawa K, Aoyagi Y, J. Appl. Phys., 99, 064506 (2006)
  31. Stewart M, Howell RS, Pires L, Hatalis MK, IEEE Trans. Electron Devices, 48, 845 (2001)
  32. Jonda C, Mayer ABR, Stolz U, Elschner A, Karbach A, J. Mater. Sci., 35(22), 5645 (2000)
  33. Fritz SE, Kelley TW, Frisbie CD, J. Phys. Chem. B, 109(21), 10574 (2005)
  34. Kim CS, Jo SJ, Lee SW, Kim WJ, Baik HK, Lee SJ, Hwang DK, Im S, Semicond. Sci. Technol., 21, 1022 (2006)
  35. Banpurkar AG, Sawane Y, Wadhai SM, Murade CU, Siretanu I, van den Ende D, Mugele F, Faraday Discuss., 199, 29 (2017)
  36. Kim JM, Oh J, Jung KM, Park K, Jeon JH, Kim YS, Semicond. Sci. Technol., 34, 075015 (2019)
  37. Nitani M, Nakayama K, Maeda K, Omori M, Uno M, Org. Electron., 71, 164 (2019)
  38. Yang C, Kim YJ, Lee HS, Kim SR, Kim SH, An TK, Sci. Adv. Mater., 9, 2234 (2017)
  39. Raghuwanshi V, Bharti D, Varun I, Mahato AK, Tiwari SP, Org. Electron., 34, 284 (2016)
  40. Raghuwanshi V, Bharti D, Mahato AK, Varun I, Tiwari SP, Synth. Met., 236, 54 (2018)
  41. Ortiz RP, Facchetti A, Marks TJ, Chem. Rev., 110(1), 205 (2010)
  42. Kim K, Shin S, Kim SH, Lee J, An TK, Appl. Surf. Sci., 479, 280 (2019)
  43. Nam S, Jeon H, Kim SH, Jang J, Yang C, Park CE, Org. Electron., 10, 67 (2009)