화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.528, No.3, 405-412, 2020
Resurrection from lethal knockouts: Bypass of gene essentiality
Understanding genotype-phenotype relationships is a central pursuit in biology. Gene knockout generates a complete loss-of-function genotype and is a commonly used approach for probing gene functions. The most severe phenotypic consequence of gene knockout is lethality. Genes with a lethal knockout phenotype are called essential genes. Based on genome-wide knockout analyses in yeasts, up to approximately a quarter of genes in a genome can be essential. Like other genotype-phenotype relationships, gene essentiality is subject to background effects and can vary due to gene-gene interactions. In particular, for some essential genes, lethality caused by knockout can be rescued by extragenic suppressors. Such "bypass of essentiality" (BOE) gene-gene interactions have been an understudied type of genetic suppression. A recent systematic analysis revealed that, remarkably, the essentiality of nearly 30% of essential genes in the fission yeast Schizosaccharomyces pombe can be bypassed by BOE interactions. Here, I review the history and recent progress on uncovering and understanding the bypass of gene essentiality. (C) 2020 Elsevier Inc. All rights reserved.