화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.527, No.4, 889-895, 2020
Lupeol suppresses plasminogen activator inhibitor-1-mediated macrophage recruitment and attenuates M2 macrophage polarization
Tumor-associated macrophages (TAMs) are closely related with poor prognosis of cancers. The current study investigated whether lupeol regulates TAMs by focusing on the recruitment and polarization of macrophages. We found that lupeol suppressed the recruitment of THP-1 macrophages (THP-1 cells differentiated into macrophages) towards H1299 lung carcinoma cells by inhibiting plasminogen activator inhibitor-1 (PAI-1) production from H1299 cells. The reduced migration of THP-1 macrophages by lupeol was recovered by adding recombinant human PAI-1 as a chemoattractant. Knockdown of PAI-1 or treatment of tiplaxtinin, a PAI-1 inhibitor, in H1299 cells abrogated the chemotaxis of macrophages. Furthermore, lupeol suppressed the interleukin (IL)-4- and IL-13-induced M2 macrophage polarization. The mRNA expression of M2 macrophage markers and the phosphorylation of signal transducer and activator of transcription 6 (STAT6) were commonly decreased by lupeol in RAW264.7 cells. In addition, lupeol-suppressed M2 macrophage polarization led to the reduced migration of Lewis lung carcinoma (LLC) cells. Taken together, our results suggest that lupeol attenuates PAI-1-mediated macrophage recruitment towards cancer cells and inhibits M2 macrophage polarization. (C) 2020 Elsevier Inc. All rights reserved.