화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.526, No.1, 21-28, 2020
Divergent effects of myogenic differentiation and diabetes on the capacity for muscle precursor cell adipogenic differentiation in a fibrin matrix
The development of ectopic adipose tissue in skeletal muscle is associated with several skeletal muscle and metabolic pathologies, including Type II Diabetes Mellitus. The adipogenic differentiation of muscle precursor cells (MPCs) has been postulated to occur in skeletal muscle in vivo in a three-dimensional (3-D) configuration; therefore, it is appropriate to investigate this phenomenon using 3-D matrices in vitro. The capacity for MPC adipogenic differentiation in a 3-D environment was investigated in fibrin hydrogels by treating MPCs derived from healthy or diabetic animals with adipogenic induction medias that differed in their ability to increase lipid accumulation and activate the expression of genes associated with adipogenic differentiation (peroxisome proliferator-activated receptor gamma (PPARG), adiponectin (ADIPOQ), and fatty acid synthase (FAS)). The capacity for adipogenic differentiation was diminished, but not prevented, if myogenic differentiation preceded MPC exposure to adipogenic induction conditions. Conversely, adipogenic differentiation was greater in hydrogels containing MPCs from diabetic rats as compared to those derived from lean rats, as evidenced by an increase in lipid accumulation and adipogenic gene expression. Collectively, the data herein support a role for the MPCs in adipogenesis in a 3-D environment and that they may contribute to the ectopic accumulation of adipose tissue. The observation that the potential for adipogenic differentiation is maintained even after a period of myogenic differentiation alludes to the possibility that adipogenesis may occur during different phases of muscle development. Finally, the increase in adipogenic differentiation in hydrogels containing MPCs derived from diabetic animals provides strong evidence that a pathological environment in vivo increases their capacity for adipogenesis. (C) 2020 Elsevier Inc. All rights reserved.