Heat Transfer Engineering, Vol.41, No.9-10, 814-824, 2020
Heat and Moisture Transfer in a Rectangular Cavity Partially Filled with Hygroscopic Porous Media
This work deals with turbulent natural convection heat and moisture transfer with thermal radiation in a rectangular cavity partially filled with hygroscopic porous medium. The governing equations for the momentum and heat transfer in both free fluid and hygroscopic porous media and moisture content transfer in hygroscopic porous medium were solved by the finite element method. Comparisons with experimental and numerical results in the literature have been carried out. Effects of thermal radiation, Rayleigh number on natural convection and heat transfer in both free fluid and porous medium and moisture content transfer in porous medium were analyzed. It was found that surface thermal radiation can significantly change the temperature and moisture content fields in the regions of free flow and hygroscopic porous medium. With the increase in Rayleigh number, the temperature of porous medium at the interface increased slightly, and the magnitude of moisture change becomes smaller.