화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.65, No.7, 3120-3127, 2020
Event-Triggered Dynamic Output Feedback Control for Switched Systems With Frequent Asynchronism
This paper addresses the event-triggered dynamic output feedback control for switched linear systems with frequent asynchronism. Different from existing work, which limits at most once switching during an interevent interval, we adopt the average dwell time approach without limiting the minimum dwell time of each subsystem, and thus frequent switching is allowed to happen in an interevent interval. Since the difficulty in acquiring the full information of system states, the dynamic output feedback controller is taken into account to stabilize the switched system. By employing a controller-mode-dependent Lyapunov functional, stability criterion is proposed for the resulting closed-loop system, based on which the dynamic output feedback controller together with the mode-dependent event-triggered mechanism is codesigned. Besides, the existence of the lower bound on interevent intervals is attentively discussed, which gets rid of the Zeno behavior. Finally, the effectiveness of the proposed method is illustrated by numerical simulations.