화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.45, No.39, 20525-20534, 2020
Determining correlations between final hydrogen temperature and refueling parameters from experimental and numerical data
During the hydrogen filling process, the excessive temperature rise may cause the hydrogen storage tank to fail. Therefore, preventing the temperature from rising too high is an important guarantee for the safety of the hydrogen storage cylinder. The analytical solution of a single-zone thermodynamic model for hydrogen refueling is obtained. Based on the analytical solution of the final hydrogen temperature derived from the hydrogen filling theoretical model, the relationship among the final hydrogen temperature and the initial temperature and the inlet temperature and the ambient temperature is obtained. The model is used to achieve correlations coefficients among the above parameters. Data of Type III 40L tank and Type IV 29L tank used in the model are from the experiment, and data of Type III 25L tank and Type IV 174L tank are from the simulation. The results show that our analytical solution is applicable for determining correlations between final hydrogen temperature and refueling parameters from experimental and numerical data. Our analytical solution is more accurate than the reduced model reported in reference. At the same time, the effects of the initial temperature and the inlet temperature on the final temperature are stronger in Type IV tank than in the Type III tank. This study may provide guides for improving hydrogen refueling standards. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.