화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.9, 851-860, August, 2020
Polymerization with Borane Chemistry. Tributylborane/p-Quinone System as a New Method of Reversible-Deactivation Radical Copolymerization for Styrene and Methyl Acrylate
E-mail:
We report a reversible-deactivation radical copolymerization of styrene and methyl acrylate in the presence of tributylborane and different p-quinones. p-Quinones, such as 1,4-naphthoquinone, 2,3-dimethyl-1,4-benzoquinone, 2,5-ditert-1,4-butylbenzoquinone, and duroquinone, with addition of a catalytic amount of tributylborane, allow for the control over styrene/methyl acrylate copolymerization. The process proceeds in a controlled manner via a reversible homolytic dissociation of the active macromolecules with terminal aryloxyboron-groups. The rate of styrene/methyl acrylate copolymerization depends on the inhibition constants of quinones. The molecular weight and molecular weight distribution of copolymers are directly dependent on the inhibitory abilities of the quinones. 1,4-Naphthoquinone and 2,3-dimethyl-1,4-benzoquinone act as the most effective mediators of chain propagation. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) results showed that the macromolecules contained internal fragments of p-quinone. Also, of the terminal aryloxyboron-groups were detected in the mass spectra. On realization of the “living” mechanism of copolymerization, the structure of copolymers obtained at high conversions can be considered as similar to the gradient structure. Stereo-regularity of the copolymers differed from the conventional radical copolymerization. The glass-transition temperature (Tg) of the gradient copolymer differed from Tg of the random compositional heterogeneous copolymer. The effect of the macromolecular structure on the mechanical properties of the copolymers was studied.
  1. Kolesnikov GA, Fedorova LS, Bull. Acad. Sci. USSR, Div. Chem. Sci., 2, 251 (1957)
  2. Furukawa J, Tsuruta T, Inoue S, J. Polym. Sci. A: Polym. Chem., 26, 234 (1957)
  3. Ollivier C, Renaud P, Chem. Rev., 33, 3415 (2001)
  4. Chung TC, Janvikul W, Lu HL, J. Am. Chem. Soc., 118(3), 705 (1996)
  5. Chung TC, Janvikul W, J. Organomet. Chem., 581, 176 (1999)
  6. Lu B, Chung TC, Macromolecues, 31, 5943 (1998)
  7. Chung TC, Rubright D, Jiang GL, Macromolecules, 26, 3467 (1993)
  8. Lin WT, Niu H, Chung TCM, Dong JY, J. Polym. Sci. A: Polym. Chem., 48(16), 3534 (2010)
  9. Sonnenschein MF, Webb SP, Kastl PE, Arriola DJ, Wendt BL, Harrington DR, Rondan NG, Macromolecules, 37(21), 7974 (2004)
  10. Zhao C, Sugimoto R, Naruoka Y, Chinese J. Polym. Sci., 36, 592 (2018)
  11. Zaremskii MY, Odintsova VV, Plutalova AV, Gurskii ME, Bubnov YN, Polym. Sci. Ser. B, 60, 162 (2018)
  12. Zaremski MY, Odintsova VV, Bol’shakova AV, Garina ES, Gurskii ME, Bubnov YN, Polym. Sci. Ser. B, 60, 436 (2018)
  13. Lv C, Du Y, Pan X, J. Polym. Sci., 58, 14 (2020)
  14. Lv C, He C, Pan X, Angew. Chem.-Int. Edit., 57, 9430 (2018)
  15. Wilson OR, Mageneau AJD, ACS Macro Lett., 7, 370 (2018)
  16. Alagi P, Hadjichristidis N, Gnanou Y, Feng X, ACS Macro Lett., 8, 664 (2019)
  17. Uematsu R, Saka C, Sumiya Y, Ichino T, Taketsugu T, Maeda S, Chem. Commun., 53, 7302 (2017)
  18. Arancibia E, Grotewold J, Lissi EA, Villa AE, J. Polym. Sci. A: Polym. Chem., 7, 3430 (1969)
  19. Dodonov VA, Kuznetsova YL, Lopatin MA, Skatova AA, Russ. Chem. Bull., 53, 2209 (2004)
  20. Ludin DV, Kuznetsova YL, Zaitsev SD, Polym. Sci. Ser. B, 59, 516 (2017)
  21. Ludin DV, Kuznetsova YL, Zaitsev SD, Russ. J. Appl. Chem., 88, 295 (2015)
  22. Ludin DV, Zaitsev SD, Russ. Chem. Bull., 66, 1109 (2017)
  23. Ludin DV, Zaitsev SD, Kuznetsova YL, Markin AV, Mochalova AE, Salomatina EV, J. Polym. Res., 24, 117 (2017)
  24. Zaremski MY, Kalugin DI, Golubev VB, Polym. Sci. Ser. A, 51, 103 (2009)
  25. Beginn U, Colloid Polym. Sci., 286, 1465 (2008)
  26. Kalugin D, Borisova O, Zaremski M, Garina E, Kolesov D, Bulgakov B, Avdeev A, Eur. Polym. J., 60, 213 (2014)
  27. Alam MM, Jack KS, Hill DJT, Whittaker AK, Peng H, Eur. Polym. J., 116, 394 (2019)
  28. Shull KR, Macromolecules, 35(22), 8631 (2002)
  29. Chen Y, Chen H, Feng M, Dong Y, Eur. Polym. J., 85, 489 (2016)
  30. Zheng C, Soft Matter, 15, 5357 (2019)
  31. Ludin DV, Kuznetsova YL, Zamyshlyaeva OG, Zaitsev SD, Polym. Sci. Ser. B, 59, 7 (2017)
  32. Grigoreva A, Polozov E, Zaitsev S, Colloid Polym. Sci., 297, 1423 (2019)
  33. Armarego WLF, Chai CCL, Purification of Laboratory Chemicals, Elsevier, Oxford, 2013.
  34. Brown HC, Racherla US, J. Org. Chem., 51, 427 (1986)
  35. Derikvand F, Bigi F, Maggi R, Piscopo CG, Sartori G, J. Catal., 271(1), 99 (2010)
  36. Ito K, Yamashita Y, J. Polym. Sci. B: Polym. Phys., 3, 637 (1965)
  37. Tudos F, Kelen T, Foldes-Berezhnykh T, Turcsanyi B, Kinet. Catal. Lett., 2, 439 (1975)
  38. Ludin DV, Kuznetsova YL, Grishin ID, Kuropatov VA, Zaitsev SD, Russ. Chem. Bull., 65, 1859 (2016)
  39. Kuznetsova YL, Chesnokov SA, Zaitsev SD, Ludin DV, Polym. Sci. Ser. B, 54, 434 (2012)
  40. Tudos F, Foldes-Berezsnich T, Prog. Polym. Sci, 14, 717 (1989)
  41. Beraud V, Gnanou Y, Walton JC, Maillard B, Tetrahedron Lett., 41, 1195 (2000)
  42. Beraud V, Businelli L, Gnanou Y, Maillard B, Macromol. Rapid Commun., 21(13), 901 (2000)
  43. Ingold KU, Roberts BP, Free-Radical Substitution Reactions, Wiley-Interscience, New York, 1971.
  44. Aerdts AM, de Haan JW, German AL, van der Velden GPM, Macromolecules, 24, 1473 (1991)
  45. van Doremaele GHJ, German AL, de Vries NK, van der Velden GPM, Macromolecules, 23, 4206 (1990)
  46. Isobe Y, Nakano T, Okamoto Y, J. Polym. Sci. A: Polym. Chem., 39(9), 1463 (2001)
  47. Lutz JF, Kirci B, Matyjaszewski K, Macromolecules, 36(9), 3136 (2003)
  48. Chernikova EV, Yulusov VV, Garina ES, Kostina YV, Bondarenko GN, Nikolaev AY, Polym. Sci. Ser. B, 55, 176 (2013)
  49. Wong CLH, Kim J, Torkelson JM, J. Polym. Sci. B: Polym. Phys., 45(20), 2842 (2007)
  50. Guo Y, Gao X, Luo Y, J. Polym. Sci. B: Polym. Phys., 53, 860 (2015)