Journal of Materials Science, Vol.55, No.29, 14179-14196, 2020
Hydrothermal carbon-supported Ni catalysts for selective hydrogenation of 5-hydroxymethylfurfural toward tunable products
5-hydroxymethylfurfural (HMF), as one of the most important renewable platform-chemicals, is a valuable precursor for the synthesis of biofuels and bio-products. In this work, hydrothermal carbon (HC), with a large specific surface area and plenty of oxygen-containing functional groups, was derived from sucrose via a hydrothermal method, which could facilitate the dispersion and anchoring of Ni. The selectivities to 2,5-bis(hydroxymethyl)furan (BHMF), 2,5-dimethyltetrahydrofuran (DMTHF), and 2,5-dimethylfuran (DMF) were tuned by modulating Ni nanoparticle sizes and Ni/NiO ratios. The yield of BHMF can reach 88% with its selectivity up to 94% on the reduced 10%-Ni/HC catalyst with big Ni particle size; while the total yield of DMF + DMTHF is up to 94.6% at full HMF conversion on the calcined 5%-Ni/HC catalyst with small Ni particle sizes and balanced Ni/NiO ratios; for the calcined Ni/HC catalysts, the synergistic effect between Ni(0), favoring H(2)activation and hydrogenation, and NiO, facilitating the hydrogenolysis of C-O bonds, could promote the selective hydrogenolysis of HMF to biofuel production (DMF and DMTHF). [GRAPHICS] .