Journal of Physical Chemistry A, Vol.124, No.19, 3720-3729, 2020
Theoretical Study on the Reduction Mechanism of Np(VI) by Hydrazine Derivatives
The key to effective separation of neptunium from the spent fuel reprocessing process is to adjust and control its valence state. Hydrazine and its derivatives have been experimentally confirmed to be effective salt-free reductants for reducing Np(VI) to Np(V). We theoretically studied the reduction reactions of Np(VI) with three hydrazine derivatives (2-hydroxyethyl hydrazine (HOC2H4N2H3), methyl hydrazine (CH3N2H3), and formyl hydrazide (CHON2H3)) and obtained the free radical ion mechanism and the free radical mechanism. Their potential energy profiles (PEPs) suggest that the free radical mechanism is the most probable reaction. Based on the energy barrier of the free radical ion mechanism, the trend of the reduction ability of the three hydrazine derivatives is HOC2H4N2H3 > CH3N2H3 > CHON2H3, which is in excellent agreement with the experimental results. Lastly, the analyses of natural bond orbitals (NBOs), quantum theory of atoms-in-molecules (QTAIM), and electron localization function (ELF) have been carried out to explore the bonding evolution of the structures along the reaction pathways. This work provides an insight into the reduction mechanism of Np(VI) with hydrazine derivatives from the theoretical perspective and helps to design more effective reductants for the separation of U/Np and Np/Pu in spent fuel reprocessing.