화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.124, No.16, 3228-3241, 2020
Induced Fit of Crown Cavity to Ammonium Ion Guests and Photoinduced Intracavity Reactions: Cold Gas-Phase Spectroscopy of Dibenzo-18-Crown-6 Complexes with NH4+, CH3NH3+, and CH3CH2NH3+
Ultraviolet photodissociation (UVPD) spectra of dibenzo-18-crown-6 (DB18C6) complexes with NH4+, CH3NH3+ (MeNH3+), and CH3CH2NH3+ (EtNH3+) [NH4+(DB18C6), MeNH3+(DB18C6), and EtNH3+(DB18C6), respectively] were observed under cold gas-phase conditions. We also measured the infrared (IR)-UV double-resonance spectra of these complexes in the NH stretching region to examine the encapsulation structure. The UVPD and IR-UV spectra were analyzed using quantum chemical calculations. All the ammonium complexes show sharp 0-0 bands at positions close to that of the K+(DB18C6) complex; the conformation of the DB18C6 component in the ammonium complexes is similar to that in K+(DB18C6). In addition, the ammonium complexes each have another type of isomer that the K+(DB18C6) complex does not show in the gas phase. In these isomers, the conformation of the DB18C6 cavity changes, and the strength of the NH center dot center dot center dot O hydrogen bond increases. During the UVPD, the NH4+(DB18C6) complex provides various photofragment species, such as the C8H9O2+ ion, resulting from cleavage of the DB18C6 component, whereas the dominant fragment ion for the MeNH3+(DB18C6) and EtNH3+(DB18C6) complexes is the ammonium ion itself. The UVPD investigation of deuterated systems suggests that after UV excitation of the NH4+(DB18C6) complex, the dissociation process is initiated by proton transfer from NH4+ to DB18C6, followed by the migration of hydrogen atoms in the crown cavity and the cleavage of the ether ring.