화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.124, No.30, 6657-6663, 2020
Tuning the Cation-Anion Interactions by Methylation of the Pyridinium Cation: An X-ray Photoelectron Spectroscopy Study of Picolinium Ionic Liquids
X-ray photoelectron spectroscopy is used to investigate the impact of methylation on the electronic environment of pyridinium cations. Because of the electron-donating effect of the methyl group, there is a significant increase in electron density on the cationic nitrogen. The shift of the N 1s binding energy is inversely proportional to the anion basicity. The methylation position on the electronic environment of the cationic nitrogen is investigated. The N 1s binding energy follows the trend: 1-octylpyridinium > 1-octyl-3-picolinium > 1-octyl-4-picolinium > 1-octyl-2-picolinium, which is in good agreement with the cation acidity. The increase in the inductive effect subsequently weakens the cation-anion interactions through charge transfer from the anion to the cation, causing a subtle change in the electronic environment of the anion. Such an effect is noticeably reflected in the Br 3d binding energy. It shows that the Br 3d5/ 2 binding energy of 1-octyl-2-picolinium bromide is 0.2 eV lower than that of 1-octylpyridinium bromide.