화학공학소재연구정보센터
Langmuir, Vol.36, No.26, 7517-7527, 2020
Diffusion-Controlled Spontaneous Emulsification of Water-Soluble Oils via Micelle Swelling
Spontaneous emulsification of toluene, xylenes, cyclo-hexane, and mineral oil in a nonionic nonylphenol polyethoxylate surfactant solution was investigated by visual observations coupled with dynamic light scatting measurements and interfacial tensiometry. For water-soluble oils, nanoscale emulsions formed spontaneously by diffusion of oil molecules into the aqueous surfactant solutions and subsequent swelling of surfactant micelles with oil. Micelle swelling rates were quantified to assess system spontaneity, revealing that oil solubility in water was directly correlated to the spontaneity of the emulsion (toluene > xylenes > cyclohexane). When experiments were intentionally designed to create surfactant concentration gradients, Marangoni flows were found to enhance spontaneity. Despite their spontaneous formation, emulsion stability was limited over the course of 40 days by Ostwald ripening followed by creaming and evaporation. These results provide insights on the likelihood of nanoemulsion formation and persistence in oily wastewater as the components in this study are present in many wastewater systems.