Polymer Engineering and Science, Vol.60, No.8, 1877-1889, 2020
Design of ethylene-propylene-diene monomer foam and its double-layer composite for improving sound absorption properties via experimental method and theoretical verification
In this work, the ethylene-propylene-diene monomer (EPDM) foam was fabricated via 4-4 '-oxobisbenzenesulfonyl hydrazide (OBSH) and phenolic resin (PF) in an effort to prepare the sound-absorbing composite which has excellent sound absorption at the medium and low frequency. For single-layer EPDM foams, cell morphology showed a certain pattern, causing the peak of the sound absorption coefficient move to a higher frequency and the peak value reached a maximum of about 0.75 as the OBSH content increased. In addition, with the foaming temperature increasing, the cell morphology had a different tendency and the peak of the sound absorption coefficient moved first to the higher frequency and then to the lower frequency due to the vulcanization reaction. Compared with the single-layer EPDM foams, the sound absorption curve of the double-layer composite made of the single-layer EPDM foam and pure EPDM sheet with cavities moved to a lower frequency by about 400 Hz. The theoretical calculation method was used to verify the accuracy of the experimental results. This work provided a simple approach to control the sound absorption property of EPDM foamed material and its double-layer composite through from an experimental and theoretical perspective.