Polymer Engineering and Science, Vol.60, No.5, 1054-1065, 2020
Comprehensively improved mechanical properties of silane crosslinked polypropylene/ethylene propylene diene monomer elastomer blends
The properties and structure of silane crosslinked polypropylene (PP)/ethylene propylene diene monomer (EPDM) elastomer blends had been carried out. Fourier transform infrared spectroscopy and gel content tests were employed to evaluate the crosslinking reaction of PP/EPDM blends. Crosslinking efficiency of PP/EPDM blends was investigated using thermogravimetric analysis, differential scanning calorimeter, dynamic mechanical analysis, dynamic rheology, and tensile testing. Tan delta curves of silane crosslinked PP/EPDM blends exhibited an obvious "gel point" originated from the formation of dynamic crosslinking network. The blend corresponding to the "gel point" presented comprehensively improved mechanical properties. These results demonstrated that characteristic rheological parameters showed close correlations with key mechanical properties of silane crosslinked PP/EPDM blends. Scanning electron microscopy images illustrated that crosslinking had remarkably changed the morphologies of PP/EPDM blends. The large deformation mechanism of these blends had been suggested.