Renewable Energy, Vol.156, 719-730, 2020
Closed-loop model-based wind farm control using FLORIS under time-varying inflow conditions
Wind farm (WF) controllers adjust the control settings of individual turbines to enhance the total performance of a wind farm. Most WF controllers proposed in the literature assume a time-invariant inflow, whereas important quantities such as the wind direction and speed continuously change over time in reality. Furthermore, properties of the inflow are often assumed known, which is a fundamentally compromising assumption to make. This paper presents a novel, closed-loop WF controller that continuously estimates the inflow and maximizes the energy yield of the farm through yaw-based wake steering. The controller is tested in a high-fidelity simulation of a 6-turbine wind farm. The WF controller is stress-tested by subjecting it to strongly-time-varying inflow conditions over 5000 s of simulation. A time-averaged improvement in energy yield of 1.4% is achieved compared to a baseline, greedy controller. Moreover, the instantaneous energy gain is up to 11% for wake-loss-heavy situations. Note that this is the first closed-loop and model-based WF controller tested for time-varying inflow conditions (i.e., where the mean wind direction and wind speed change over time) at such fidelity. This solidifies the WF controller as the first realistic closed-loop control solution for yaw-based wake steering. (C) 2020 The Authors. Published by Elsevier Ltd.
Keywords:Closed-loop wind farm control;Time-varying inflow;Wake steering;Ambient condition estimation;FLORIS;Large-eddy simulation