Renewable Energy, Vol.153, 998-1004, 2020
Unveiling one-pot scalable fabrication of reusable carboxylated heterogeneous carbon-based catalysts from eucalyptus plant with the assistance of dry ice for selective hydrolysis of eucalyptus biomass
Biomass is the most abundant source for organic carbon-based substances on the earth; however, its utilization as sources for heterogeneous catalysts for biorefineries is rarely reported. Herein, a simple approach was developed for tailoring one-pot fabrication of carboxylate heterogeneous catalysts from woody biomass eucalyptus denoted as (ECS) via the ball-milling in the presence of dry ice as an oxidant followed by protonation. The ECS catalyst was obtained in a high yield of (100%) without any waste, organic solvents, and multistep reactions. The resultant ECS is composed of an aromatic skeleton enriched with a carboxylic group (COOH) of (2.4 mmol g(-1)) as well as some aliphatic moieties (CH0.44O0.42). The COOH content in the ECS was a function of the ball-milling time. The newly designed ECS catalyst allowed the successful hydrolysis of eucalyptus biomass to xylose (95.1%) and glucose (81%) at 180 degrees C within only 17 min in the presence of 120 ppm of HCl. Intriguingly, the obtained solid residuals of both catalysts and unhydrolyzed eucalyptus could be milled again to form a fresh ECS catalyst. The presented approach opens new avenues for the fabrication of scalable heterogeneous-carbon catalysts for biorefineries applications. (C) 2020 Elsevier Ltd. All rights reserved.