화학공학소재연구정보센터
Solar Energy, Vol.204, 208-222, 2020
Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid
Covalent Functionalized-Multi wall carbon nanotubes (CF-MWCNTs) and Covalent Functionalized-graphene nanoplatelets (CF-GNPs) with hexagonal boron nitride (h-BN) were suspended in distilled water to prepare the hybrid nanofluids as working fluids inside the Flat Plate Solar Collector (FPSC). Different concentrations of the hybrid nanoparticles were considered and Tween-80 (Tw-80) was used as a surfactant. The stability and thermophysical properties were tested using different measurement tools. The structural and morphological properties were examined using FTIR, XRD, UV-vis spectrometry, HRTEM, FESEM, and EDX. The thermal efficiency of FPSC were tested under different volumetric flow rates (2 L/min, 3 L/min, and 4 L/min), whereas the efficiency of the collector was determined based on ASHRAE standard 93-2010. As a result, the most thermal-efficient solar collector improved up to 85% with hybrid nanofluid as the absorption medium at 4 L/min flow rate. Increment in nanoparticles' concentrations enhanced thermal energy gain and resulted in higher fluid outlet temperature.