화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.5, 652-657, September, 2020
반응기 혼합법에 의한 폴리올레핀/2D-나노시트 나노복합체 제조; 에틸렌-프로필렌 공중합체
Preparation of Polyolefin/2D-nanosheet Nanocomposites via Reactor Mixing; Poly(ethylene-co-propylene)/rGO Composites
E-mail:,
초록
알킬개질 환원 산화 그래핀(rGO)이 분산된 에틸렌-프로필렌 공중합 복합체를 반응기 혼합법으로 제조하였다. 이 반응기 혼합법은 Et(Ind)2ZrCl2/methylauminoxane(MAO) 촉매계를 사용하여 에틸렌-프로필렌의 용액중합 후 반응기 내에 rGO를 첨가하는 방법이다. 제조된 복합체의 미세구조, 기계적 및 열적 성질을 조사하였다. 복합체 내에 rGO는 균일하게 분산되었으며, 알킬개질로 인하여 rGO와 에틸렌-프로필렌 공중합체의 표면 접착력이 증가한 것으로 판단된다. rGO 첨가에 따라 열안정성의 변화는 거의 없었으나, 기계적 물성이 크게 증가하였다(5 wt% rGO 첨가하였을 때, 인장강도와 모듈러스는 각각 40%, 50% 증가). 따라서 반응기 혼합법은 고기능 폴리올레핀의 제조에 유용할 것으로 판단된다.
Ethylene-propylene copolymer (EP)/modified reduced graphene oxide (rGO) composites were fabricated via reactor mixing method under mild conditions using Et(Ind)2ZrCl2 activated with methylauminoxane (MAO). Microstructure, mechanical and thermal properties of composites are presented. The rGO nanosheets were homogeneously dispersed in EP matrix and the interfacial adhesion with EP was excellent by the modifying the rGO. Although the thermal stability of the aforementioned composites was relatively unchanged when compared to copolymer, significant enhancements in the mechanical properties were observed (e.g., up to 40% increase in the tensile strength and 50% increase Young’s modulus for composites containing 5.0 wt% rGO). Thus, this reactor mixing provides a method for production of high performance polyolefins.
  1. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS, Polymer, 52(1), 5 (2011)
  2. Fang M, Wang K, Lu H, Yang Y, Nutt S, J. Mater. Chem., 19, 7098 (2009)
  3. Verma M, Chauhan SS, Dhawan SK, Choudhary V, Compos. Part B-Eng., 120, 118 (2017)
  4. Mittal V, Luckachan GE, Matsko NB, Macromol. Chem. Phys., 215, 255 (2014)
  5. Cheng S, Chen X, Hsuan YG, Li CY, Macromolecules, 49, 993 (2012)
  6. Zhang HX, Ko EB, Park JH, Moon YK, Zhang XQ, Yoon KB, Compos. Sci. Technol., 136, 61 (2016)
  7. Kim H, Miura Y, Macosko CW, Chem. Mater., 22, 3441 (2010)
  8. Singh VK, Shukla A, Patra MK, Saini L, Jani RK, Vadera SR, Kumar N, Carbon, 50, 2202 (2012)
  9. Li PP, Chen Y, Zhu J, Feng M, Zhuanag X, Lin Y, Zhan H, Chem. Eur. J., 17, 780 (2011)
  10. Yang JH, Kim SH, Lee YD, Mater. Chem., 22, 10805 (2012)
  11. Jiang X, Drzal LT, Polym. Compos., 33, 636 (2012)
  12. Chaudhry AU, Mittal V, Polym. Eng. Sci., 53(1), 78 (2013)
  13. Lin Y, Jin J, Song M, J. Mater. Chem., 21, 3455 (2011)
  14. Milani MA, Gonzalez D, Quijada R, Basso NRS, Cerrada ML, Azambuja DS, Galland GB, Compos. Sci. Technol., 84, 1 (2013)
  15. Huang Y, Qin Y, Zhou Y, Niu H, Yu ZZ, Dong JY, Chem. Mater., 22, 4096 (2010)
  16. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
  17. Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ, ACS Catal., 2, 949 (2012)
  18. Sheshmani S, Fashapoyeh MA, Acta Chim. Slov., 60, 813 (2013)
  19. Pham VH, Cuong TV, Hur SH, Oh E, Kim EJ, Shin EW, Chung JS, RSC Adv., 21, 3371 (2011)
  20. Li W, Tang XZ, Zhang HB, Jiang ZG, Yu ZZ, Du XS, Mai YW, Carbon, 49, 4724 (2011)
  21. Wang C, Liu Z, Wang S, Zhang Y, J. Appl. Polym. Sci., 133, 42907 (2016)
  22. Zhang HX, Park JH, Moon YK, Ko EB, Zhang XQ, Yoon KB, J. Polym. Sci., Polym. Chem. Ed., 55, 855 (2017)
  23. Lin ZY, Liu Y, Wong CP, Langmuir, 26(20), 16110 (2010)