Polymer(Korea), Vol.44, No.5, 684-688, September, 2020
골 재생을 위한 음의 포아송을 가지는 PLGA/Hydroxyapatite/β-TCP 복합 지지체에 관한 연구
PLGA/Hydroxyapatite/β-TCP Composite Scaffold Possessing Negative Poisson’s Ratio for Bone Regeneration
E-mail:
초록
본 연구는 골조직 재생에서 효과적인 골세포 증식을 일으키기 위하여 지지체의 공극 형태를 변형시켜 음의 포아송 비를 만들어 효과적인 물리적 자극을 세포에 전달하여 세포증식의 극대화를 일으키기 위하여 시도하였다. 지지체로 사용된 고분자와 세라믹 재료는 poly(lactic-co-glycolic acid)(PLGA)와 hydroxyapatite(HA), beta-tricalcium phosphate(β-TCP)이다. 염침출법으로 지지체를 제작하여 세포 생존을 위한 환경을 제공하고 MG-63 세포를 seeding한 후, 음의 포아송 비를 가지는 지지체에 자극을 주어 세포가 충분한 자극을 받도록 하였다. 대조군(PLGA/HA) 지지체 시편의 경우, 압축자극을 가하였을 때의 세포증식률이 자극이 없을 때의 증식률보다 1, 3, 5일 차에 걸쳐 각각 약 21.4, 25.8, 39.9% 높은 결과를 보였고, 실험군(PLGA/HA/β-TCP) 지지체 시편은 압축자극을 가하였을 때 37.6, 57.7, 71.6% 높은 결과를 보였다. 이는 기존의 연구였던 PLGA/HA 복합 지지체보다 HA의 양을 40% 정도 β-TCP로 대체한 PLGA/HA/β-TCP 지지체가 약 30%가량 골세포의 성장을 도왔으며 압축 자극과의 시너지 또한 있음을 알 수 있었다.
This study attempted to maximize the cell proliferation by delivering effective physical stimulation to cells by creating a negative Poisson’s ratio by modifying the shape of the pores of the scaffold to cause effective bone cell proliferation in bone tissue regeneration. Polymer and ceramic materials used as scaffolds are poly(lactic-co-glycolic acid) (PLGA), hydroxyapatite (HA), and beta-tricalcium phosphate (β-TCP). The support was prepared by salt leaching to provide an environment for cell survival, seeding MG-63 cells, and stimulating the support with a negative Poisson’s ratio so that the cells were sufficiently stimulated. In the case of the control (PLGA/HA) support specimen, the cell proliferation rate when compressed stimulation was applied was about 21.4, 25.8, and 39.9% higher than the proliferation rate without stimulation over 1, 3, and 5 days, respectively. The results showed that the experimental group (PLGA/HA/β-TCP) scaffold specimens showed high results of 37.6, 57.7 and 71.6% when compression stimulation was applied. This means that the PLGA/HA/β-TCP scaffolds, which replaced the amount of HA with β-TCP about 40%, helped the growth of bone cells by about 30%, compared with the previous study PLGA/HA composite scaffolds in compression stimulation.
- Patricia J, Schmidmaier G, Injury, 42, 77 (2011)
- Kim YK, Kim SG, Byeon JH, Lee HJ, Um IU, Lim SC, Kim SY, Oral Surg., Oral Med., Oral Pathol., Oral Radiol. Endod., 109, 496 (2010).
- Kim IS, Kumta PN, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 111, 232 (2004)
- Choi DW, Marra KG, Kumta PN, Mater. Res. Bull., 39(3), 417 (2004)
- Kim KL, Ok KM, Kim DH, Park HC, Yoon SY, J. Korean Ceram. Soc., 50, 263 (2013)
- Lee JK, Ko YH, Lee NH, J. Korean Cryst. Growth Cryst. Technol, 22, 139 (2012)
- Choi HJ, Lee JJ, Lee JB, Sung HJ, Shin JW, Shin JW, Shin JW, Wu Y, Kim JK, Biomater. Res., 20, 32 (2016)
- Kim YH, Jyoti A, Byun IS, Oh IH, Min YK, Yang HM, Lee BT, Song HY, J. Korean Ceram. Soc., 45, 618 (2008)
- Lakes R, Science, 235, 1038 (1987)
- Friis EA, Lakes RS, Park JB, J. Mater. Sci., 23, 4406 (1988)
- LAKES R, Adv. Mater., 5(4), 293 (1993)
- Jeong JY, Park SH, Shin JW, Kang YG, Han KH, Shin JW, J. Mater. Sci. -Mater. Med., 23, 2773 (2012)
- Frost HM, Angle Orthod., 64, 175 (1994)
- Choi HJ, Lee JJ, Park YJ, Shin JW, Sung HJ, Shin JW, Wu Y, Kim JK, Biomater. Res., 20, 33 (2016)
- Choi JB, Lakes RS, J. Mater. Sci., 27, 4678 (1992)
- Choi JB, Lakes RS, Int. J. Mech. Sci., 37, 51 (1995)
- Lakes RS, Witt R, Int. J. Mech. Eng. Ed., 30, 50 (2002)
- Xidaki D, Agrafioti P, Diomatari D, Kaminari A, et al., Materials, 11, 595 (2018)
- Vikingsson L, Gomez-Tejedor JA, Ferrer GG, Ribelles JLG, J. Biomech., 48, 1310 (2015)
- Owusu-Ansah E, Baneriee U, Nature, 461, 537 (2009)
- Kong Z, Li J, Zhao Q, Zhou Z, Yuan X, Yang D, Chen X, J. Appl. Phycol., 113, 619 (2012)
- Dumas V, Perrier A, Malaval L, Laroche N, Guignandon A, Vico L, Rattner A, Biomaterials, 30, 3279 (2009)