화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.5, 695-700, September, 2020
바이오 기반의 Poly(ethylene 2,5-furandicarboxylate)의 Kneader 반응기에서 합성과 용융방사
Synthesis of Bio-based Poly(ethylene 2,5-furandicarboxylate) in a Kneader Reactor and its Melt Spinning
E-mail:
초록
석유화학물질을 사용하는 것에서 벗어나기 위하여 바이오 기반의 원료를 사용하는 것에 대한 관심이 높아지고 있다. 식물자원으로부터 생산되는 바이오 기반의 원료는 친환경적이며 지속 가능한 자원으로 여겨진다. 현재 널리 사용되고 있는 poly(ethylene terephthalate)(PET)의 대체 후보로 poly(ethylene 2,5-furandicarboxylate)(PEF)가 기대되고 있다. 본 연구는, 플라스크와 kneader 반응기에서 PEF를 중합하여 특성을 비교, 확인하였다. Kneader 반응기에서 효과적으로 PEF를 합성할 수 있었으며, 결과물을 용융 방사한 섬유는 1.80 g/den의 인장강도와, 114.25%의 변형률을 보여주어 PEF를 섬유로 사용할 수 있는 가능성을 확인하였다.
There is a growing interest in using bio-based raw materials as a replacement for petrochemical materials. Bio-based materials produced from plant resources are considered environmentally sustainable resources. Poly(ethylene 2,5-furandicarboxylate) (PEF) is now widely used and is considered the main substitute for poly(ethylene terephthalate) (PET). In this study, PEF was polymerized in a flask and a kneader reactor, and the properties of PEF were characterized. In the kneader reactor, PEF was synthesized effectively, and the resultant melt-spun fibers with a tensile strength of 1.80 g/den and a strain of 114.25% were obtained, confirming the possibility of utilizing PEF as a fiber.
  1. Iwata T, Angew. Chem.-Int. Edit., 54, 3210 (2015)
  2. Vink ET, Rabago KR, Glassner DA, Gruber PR, Polym. Degrad. Stabil., 80, 403 (2003)
  3. Lenz RW, Marchessault RH, Biomacromolecules, 6(1), 1 (2005)
  4. Gandini A, Silvestre AJD, Pascoal Neto C, Sousa AF, Gomes M, J. Polym. Sci. A: Polym. Chem., 47(1), 295 (2009)
  5. Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter GJM, Coelho JFJ, Silvestre AJD, Polym. Chem., 6, 5961 (2015)
  6. Li N, Zheng Y, Wei L, Teng H, Zhou J, Green Chem., 19, 682 (2017)
  7. Triebl C, Nikolakis V, Ierapetritou M, Comput. Chem. Eng., 52, 26 (2013)
  8. Climent MJ, Corma A, Iborra S, Green Chem., 13, 520 (2011)
  9. Sousa AF, Matos M, Freire CSR, Silvestre AJD, Coelho JFJ, Polymer, 54(2), 513 (2013)
  10. Gubbels E, Jasinska-Walc L, Koning CE, J. Polym. Sci. A: Polym. Chem., 51(4), 890 (2013)
  11. Burgess SK, Leisen JE, Kraftschik BE, Mubarak CR, Kriegel RM, Koros WJ, Macromolecules, 47(4), 1383 (2014)
  12. Nakajima H, Dikstra P, Loos K, Polymers, 9, 523 (2017)
  13. Gomes M, Gandini A, Silvestre AJD, Reis B, J. Polym. Sci. A: Polym. Chem., 49(17), 3759 (2011)
  14. Matos M, Sousa AF, Fonseca AC, Freire CSR, Coelho JFJ, Silvestre AJD, Macromol. Chem. Phys., 215, 2175 (2014)
  15. Jia Z, Wang J, Sun L, Zhu J, Liu X, J. Appl. Polym. Sci., 135, 46076 (2018)
  16. Nunes RW, Martin JW, Johnson JF, Polym. Eng. Sci., 22, 205 (1982)