화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.9, 447-452, September, 2020
Removal of Heavy Metals from Wastewater using α-Fe2O3 Nanocrystals
E-mail:
In this work, α-Fe2O3 nanocrystals are synthesized by co-precipitation method and used as adsorbent to remove Cr6+, Cd2+, and Pb2+ from wastewater at room temperature. The prepared sample is evaluated by XRD, BET surface area, and FESEM for structural and morphological characteristics. XRD patterns confirm the formation of a pure hematite structure of average particle size of ~ 40 nm, which is further supported by the FESEM images of the nanocrystals. The nanocrystals are found to have BET specific surface area of ~ 39.18 m2 g.1. Adsorption experiments are carried out for the different values of pH of the solutions, contact time, and initial concentration of metal ions. High efficiency Cr6+, Cd2+, and Pb2+ removal occur at pH 3, 7, and 5.5, respectively. Equilibrium study reveals that the heavy metal ion adsorption of the α-Fe2O3 nanocrystals followed Langmuir and Freundlich isotherm models. The Cr6+, Cd2+, and Pb2+ adsorption equilibrium data are best fitted to the Langmuir model. The maximum adsorption capacities of α-Fe2O3 nanocrystals related to Cr6+, Cd2+, and Pb2+ are found to be 15.15, 11.63, and 20 mg g.1, respectively. These results clearly suggest that the synthesized α-Fe2O3 nanocrystals can be considered as potential nano-adsorbents for future environmental and health related applications.
  1. Surchi KMS, Int. J. Chem., 3, 103 (2011)
  2. Rozada F, Otero M, Moran A, Garcia AI, Bioresour. Technol., 99(14), 6332 (2008)
  3. Bagbi Y, Sarswat A, Mohan D, Pandey A, Solanki PR, Sci. Rep., 7, 1 (2017)
  4. Yuan P, Liu D, Fan MD, Yang D, Zhu RL, Ge F, Zhu JX, He HP, J. Hazard. Mater., 173(1-3), 614 (2010)
  5. Ahmed MA, Ali SM, El-Dek SI, Galal A, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 178, 744 (2013)
  6. Boddu VM, Abburi K, Talbott JL, Smith ED, Environ. Sci. Technol. Lett., 37, 4449 (2003)
  7. Mayo JT, Yavuz C, Yean S, Cong L, Shiple H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL, Sci. Technol. Adv. Mater., 8, 71 (2007)
  8. Elouear Z, Bouzid J, Boujelben N, Feki M, Jamoussi F, Montiel A, J. Hazard. Mater., 156(1-3), 412 (2008)
  9. Vijayakumar G, Tamilarasan R, Dharmendirakumar M, J. Mater. Environ. Sci., 3, 157 (2012)
  10. Jiang WJ, Pelaez M, Dionysiou DD, Entezari MH, Tsoutsou D, O'Shea K, Chem. Eng. J., 222, 527 (2013)
  11. Karami H, Chem. Eng. J., 219, 209 (2013)
  12. Fang XL, Chen C, Jin MS, Kuang Q, Xie ZX, Xie SY, Huang RB, Zheng LS, J. Mater. Chem., 19, 6154 (2009)
  13. Rajput S, Pittman CU, Mohan D, J. Colloid Interface Sci., 468, 334 (2016)
  14. Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L, Sep. Purif. Technol., 68(3), 312 (2009)
  15. Roy A, Bhattacharya J, Chem. Eng. J., 211-212, 493 (2012)
  16. Cheng XL, Jiang JS, Jin CY, Lin CC, Zeng Y, Zhang QH, Chem. Eng. J., 236, 139 (2014)
  17. Liang HF, Xu BB, Wang ZC, Mater. Chem. Phys., 141(2-3), 727 (2013)
  18. Tsedenbal B, Anwar MS, Hussain I, Koo BH, J. Nanosci. Nanotechnol., 17, 7682 (2017)
  19. Mahdavi S, Jalali M, Afkhami A, J. Nanopart. Res., 14, 846 (2012)
  20. Reed BE, Matsumoto MR, Sep. Sci. Technol., 28, 2179 (1993)
  21. Giraldo L, Erto A, Moreno-Pirajan JC, Adsorption, 19, 465 (2013)
  22. Fialova D, Kremplova M, Melichar L, Kopel P, Hynek D, Adam V, Kizek R, Materials, 7, 2242 (2014)
  23. He D, Xiao Y, Liang D, Zhou H, Du L, Liu L, Mater. Sci. Appl., 2, 215 (2011)
  24. Zeng S, Tang K, Li T, Liang Z, Wang D, Wang Y, Zhou W, J. Phys. Chem. C, 111, 10217 (2007)