Korean Journal of Materials Research, Vol.30, No.9, 447-452, September, 2020
Removal of Heavy Metals from Wastewater using α-Fe2O3 Nanocrystals
E-mail:
In this work, α-Fe2O3 nanocrystals are synthesized by co-precipitation method and used as adsorbent to remove Cr6+, Cd2+, and Pb2+ from wastewater at room temperature. The prepared sample is evaluated by XRD, BET surface area, and FESEM for structural and morphological characteristics. XRD patterns confirm the formation of a pure hematite structure of average particle size of ~ 40 nm, which is further supported by the FESEM images of the nanocrystals. The nanocrystals are found to have BET specific surface area of ~ 39.18 m2 g.1. Adsorption experiments are carried out for the different values of pH of the solutions, contact time, and initial concentration of metal ions. High efficiency Cr6+, Cd2+, and Pb2+ removal occur at pH 3, 7, and 5.5, respectively. Equilibrium study reveals that the heavy metal ion adsorption of the α-Fe2O3 nanocrystals followed Langmuir and Freundlich isotherm models. The Cr6+, Cd2+, and Pb2+ adsorption equilibrium data are best fitted to the Langmuir model. The maximum adsorption capacities of α-Fe2O3 nanocrystals related to Cr6+, Cd2+, and Pb2+ are found to be 15.15, 11.63, and 20 mg g.1, respectively. These results clearly suggest that the synthesized α-Fe2O3 nanocrystals can be considered as potential nano-adsorbents for future environmental and health related applications.
- Surchi KMS, Int. J. Chem., 3, 103 (2011)
- Rozada F, Otero M, Moran A, Garcia AI, Bioresour. Technol., 99(14), 6332 (2008)
- Bagbi Y, Sarswat A, Mohan D, Pandey A, Solanki PR, Sci. Rep., 7, 1 (2017)
- Yuan P, Liu D, Fan MD, Yang D, Zhu RL, Ge F, Zhu JX, He HP, J. Hazard. Mater., 173(1-3), 614 (2010)
- Ahmed MA, Ali SM, El-Dek SI, Galal A, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 178, 744 (2013)
- Boddu VM, Abburi K, Talbott JL, Smith ED, Environ. Sci. Technol. Lett., 37, 4449 (2003)
- Mayo JT, Yavuz C, Yean S, Cong L, Shiple H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL, Sci. Technol. Adv. Mater., 8, 71 (2007)
- Elouear Z, Bouzid J, Boujelben N, Feki M, Jamoussi F, Montiel A, J. Hazard. Mater., 156(1-3), 412 (2008)
- Vijayakumar G, Tamilarasan R, Dharmendirakumar M, J. Mater. Environ. Sci., 3, 157 (2012)
- Jiang WJ, Pelaez M, Dionysiou DD, Entezari MH, Tsoutsou D, O'Shea K, Chem. Eng. J., 222, 527 (2013)
- Karami H, Chem. Eng. J., 219, 209 (2013)
- Fang XL, Chen C, Jin MS, Kuang Q, Xie ZX, Xie SY, Huang RB, Zheng LS, J. Mater. Chem., 19, 6154 (2009)
- Rajput S, Pittman CU, Mohan D, J. Colloid Interface Sci., 468, 334 (2016)
- Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L, Sep. Purif. Technol., 68(3), 312 (2009)
- Roy A, Bhattacharya J, Chem. Eng. J., 211-212, 493 (2012)
- Cheng XL, Jiang JS, Jin CY, Lin CC, Zeng Y, Zhang QH, Chem. Eng. J., 236, 139 (2014)
- Liang HF, Xu BB, Wang ZC, Mater. Chem. Phys., 141(2-3), 727 (2013)
- Tsedenbal B, Anwar MS, Hussain I, Koo BH, J. Nanosci. Nanotechnol., 17, 7682 (2017)
- Mahdavi S, Jalali M, Afkhami A, J. Nanopart. Res., 14, 846 (2012)
- Reed BE, Matsumoto MR, Sep. Sci. Technol., 28, 2179 (1993)
- Giraldo L, Erto A, Moreno-Pirajan JC, Adsorption, 19, 465 (2013)
- Fialova D, Kremplova M, Melichar L, Kopel P, Hynek D, Adam V, Kizek R, Materials, 7, 2242 (2014)
- He D, Xiao Y, Liang D, Zhou H, Du L, Liu L, Mater. Sci. Appl., 2, 215 (2011)
- Zeng S, Tang K, Li T, Liang Z, Wang D, Wang Y, Zhou W, J. Phys. Chem. C, 111, 10217 (2007)