화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.10, 888-895, September, 2020
Reticulated Vitreous Carbon Foams from Sucrose: Promising Materials for Bone Tissue Engineering Applications
E-mail:, ,
Reticulated vitreous carbon (RVC) foams have shown favorable biocompatibility and the potential to support osteoblastic adhesion. In this work, RVC foams were fabricated via template route, using a low-cost sucrose-based resin. The effect of several process parameters, such as template porosity (cell size between 500 and 1400 μm) and carbonization conditions, were studied. The resulting RVC foams displayed highly interconnected porosity (> 85%) with controllable cell size, bone-like morphology, and compressive strength of 0.06?0.26 MPa. The results suggested that the decrease in the cell size of the sacrificial sponge, the increase in the thickness of the sponge cell ligaments, and the carbonization temperature of 1500 °C, contributed to the enhancement of the mechanical response of the fabricated scaffolds. Finally, cytotoxicity and cell adhesion assays were carried out using normal human osteoblasts as a preliminary assessment of the cytocompatibility of the synthesized RVC foams. Although the mechanical strength of these foams could still be improved, these results contribute towards the development of low-cost bioactive scaffolds that resemble the morphological properties of the trabecular bone.
  1. Arabnejad S, Johnston RB, Pura JA, Singh B, Tanzer M, Pasini D, Acta Biomater., 30, 345 (2016)
  2. Billstrom GH, Blom AW, Larsson S, Beswick AD, Injury, 44, S28 (2013)
  3. Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V, Biotechnol. Adv., 29, 739 (2011)
  4. Discher DE, Janmey P, Wang YL, Science, 310, 1139 (2005)
  5. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM, Biomaterials, 83, 127 (2016)
  6. Fu Q, Saiz E, Rahaman MN, Tomsia AP, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 31, 1245 (2011)
  7. Ramalingam M, Haidar Z, Ramakrishna S, Kobayashi H, Haikel Y, Eds., Integrated Biomaterials in Tissue Engineering, Wiley, 2012.
  8. Yoo D, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 33, 1759 (2013)
  9. Wu S, Liu X, Yeung KWK, Liu C, Yang X, Mater. Sci. Eng. R-Rep., 80, 1 (2014)
  10. Janik H, Marzec M, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 48, 586 (2015)
  11. Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE, J. Nanosci. Nanotechnol., 14, 15 (2014)
  12. Tang D, Tare RS, Yang LY, Williams DF, Ou KL, Oreffo ROC, Biomaterials, 83, 363 (2016)
  13. Puppi D, Mota C, Gazzarri M, Dinucci D, Gloria A, Myrzabekova M, Ambrosio L, Chiellini F, Biomed. Microdevices, 14, 1115 (2012)
  14. Marchetti E, May O, Girard J, Hildebrand HF, Migaud H, Pasquier G, EMC - Tecnicas Quirurgicas - Ortop. Traumatol., 2, 1 (2010).
  15. Giannitelli SM, Basoli F, Mozetic P, Piva P, Bartuli FN, Luciani F, Arcuri C, Trombetta M, Rainer A, Licoccia S, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 51, 329 (2015)
  16. Venkataraman N, Bansal S, Bansal P, Narayan S, J. Int. Clin. Dent. Res. Organ., 7, 40 (2015)
  17. Jones JR, Acta Biomater., 23, S53 (2015)
  18. Pec MK, Reyes R, Sanchez E, Carballar D, Delgado A, Santamaria J, Arruebo M, Evora C, Eur. Cells Mater., 20, 282 (2010)
  19. Czarnecki JS, Blackmore M, Jolivet S, Lafdi K, Tsonis PA, Carbon, 79, 135 (2014)
  20. Walsh FC, Arenas LF, de Leon CP, Reade GW, Whyte I, Mellor BG, Electrochim. Acta, 215, 566 (2016)
  21. Chen C, Kennel EB, Stiller AH, Stansberry PG, Zondlo JW, Carbon, 44, 1535 (2006)
  22. Smorygo O, Marukovich A, Mikutski V, Pramono A, Front. Mater. Sci., 9, 413 (2015)
  23. Ferrari PE, Rezende MC, Polimeros, 8, 22 (1998)
  24. Mistry AS, Mikos AG, in Regenerative Medicine II, Springer, Berlin Heidelberg, 2005, vol. 94, pp 1-22.
  25. Geramita K, Kron B, Constantino H, et al., U.S. Patent 10173900B2 (2014).
  26. Claxton LD, Mutat. Res. - Rev. Mutat. Res., 763, 103 (2015)
  27. Nam G, Choi S, Byun H, Rhym YM, Shim SE, Macromol. Res., 21(9), 958 (2013)
  28. Inagaki M, Carbon, 87, 128 (2015)
  29. Smorygo O, Marukovich A, Mikutski V, Stathopoulos V, Front. Mater. Sci., 10, 157 (2016)
  30. Farhan S, Wang RM, Jiang H, Ul-Haq N, J. Anal. Appl. Pyrolysis, 110, 229 (2014)
  31. Letellier M, Delgado-sanchez C, Khelifa M, Fierro V, Celzard A, Carbon, 116, 562 (2017)
  32. Jana P, Fierro V, Pizzi A, Celzard A, Mater. Des., 83, 635 (2015)
  33. Brazil TR, Baldan MR, Massi M, Rezende MC, Mater. Today Proc., 4, 11617 (2017)
  34. Narasimman R, Prabhakaran K, Carbon, 55, 305 (2013)
  35. Jana P, Fierro V, Celzard A, Carbon, 62, 517 (2013)
  36. Jana P, Fierro V, Celzard A, Ind. Crop. Prod., 89, 498 (2016)
  37. Kumar R, More V, Mohanty SP, Nemala SS, Mallick S, Bhargava P, J. Colloid Interface Sci., 459, 146 (2015)
  38. Yao Y, Chen F, Chen X, Shen Q, Zhang L, Diam. Relat. Mater., 64, 153 (2016)
  39. Tondi G, Fierro V, Pizzi A, Celzard A, Carbon, 47, 1480 (2009)
  40. Amaral-Labat G, Sahimi M, Pizzi A, Fierro V, Celzard A, Phys. Rev. E, 87, 032156 (2013)
  41. Yao Y, Chen F, Chen X, Shen Q, Zhang L, Data Brief, 7, 117 (2016)
  42. Prabhakaran K, Singh PK, Gokhale NM, Sharma SC, J. Mater. Sci., 42(11), 3894 (2007)
  43. Chen Y, Chen BZ, Shi XC, Xu H, Hu YJ, Yuan Y, Shen NB, Carbon, 45, 2132 (2007)
  44. Juillerat FK, Engeli R, Jerjen I, Sturzenegger PN, Borcard F, et al., J. European Ceram. Soc., 33, 1497 (2013)
  45. Muhamad Nor MAA, Hong LC, Ahmad ZA, Md Akil H, J. Mater. Process. Technol., 207, 235 (2008)
  46. Wattanutchariya W, 2013 IEEE International Conference on Industrial Engineering and Engineering Management, Bangkok, pp 1072-1076 2013.
  47. Vinton CS, Franklin CH, U.S. Patent 3927186A (1975).
  48. Jana P, Ganesan V, Carbon, 47, 3001 (2009)
  49. McEntire BJ, Bal BS, Rahaman MN, Chevalier J, Pezzotti G, J. European Ceram. Soc., 35, 4327 (2015)
  50. Letellier M, Szczurek A, Basso MC, Pizzi A, Fierro V, Ferry O, Celzard A, Carbon, 112, 208 (2017)
  51. Manocha SM, Patel K, Manocha LM, Indian J. Eng. Mater. Sci., 17, 338 (2010)
  52. Lee KJ, Wu CH, Cheng HZ, Kuo CC, Tseng HC, Liao WK, Wei SF, Huang SF, Procedia Eng., 36, 341 (2012)
  53. Ji H, Huang Z, Wu X, Huang J, Chen K, Fang M, Liu Y, J. Mater. Res., 29, 1018 (2014)
  54. Xue C, Tu B, Nano Res., 2, 242 (2009)
  55. Balla VK, Bodhak S, Bose S, Bandyopadhyay A, Acta Biomater., 6, 3349 (2010)
  56. Smorygo O, Marukovich A, Mikutski V, Stathopoulos V, Hryhoryeu S, Sadykov V, Front. Mater. Sci., 10, 157 (2016)
  57. Tzvetkov G, Tsyntsarski B, Balashev K, Spassov T, Micron, 89, 34 (2016)
  58. Supova M, Svitilova J, Chlup Z, Cerny M, Weishauptova Z, Suchy T, Machovic V, Sucharda Z, Zaloudkova M, Ceramics-Silikaty, 56, 40 (2012)
  59. Goncalves ES, Rezende MC, Ferreira NG, Brazilian J. Phys., 36, 264 (2006)
  60. Goncalves ES, Rezende MC, Baldan MR, Ferreira NG, Quim. Nova, 32, 158 (2009)
  61. Baldan MR, Almeida EC, Azevedo AF, Goncalves ES, Rezende MC, Ferreira NG, Appl. Surf. Sci., 254(2), 600 (2007)
  62. Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS, Adv. Phys., 60, 413 (2011)
  63. Chowdhury AKMRH, Tavangar A, Tan B, Venkatakrishnan K, Sci. Rep., 7, 1 (2017)
  64. Zhang F, Weidmann A, Nebe JB, Burkel E, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 32, 1057 (2012)