Macromolecular Research, Vol.28, No.10, 939-947, September, 2020
Effect of Multi-Level Microstructure on Local and Bulk Mechanical Properties in Micro-Injection Molded PC/PET Blend
E-mail:
This study introduces a method to investigate the relationship between the multi-level microstructures and mechanical properties of polymer blends prepared by micro-injection molding (μIM). Special morphological features were systematically researched. Polycarbonate (PC), poly(ethylene terephthalate) (PET), and PC/PET microparts all exhibit typical “skin-core” morphologies. The thickness of the core layer is much greater than that of the skin layer, and the thickness of the skin layer gradually decreases along the flow direction. Photoacoustic Fourier transform infrared spectroscopy records reveal that the PC molecular chain has the biggest orientation degree, followed by PC/PET and PET chains under the same μIM processing conditions. Moreover, the molecular chains orientation in the skin layer is more than 50% that in the core layer. Nanoindentation tests are conducted to study local mechanical properties. The higher modulus in the shear layer is affected to a greater extent by high shear action in comparison with the frozen and core layers. Uniaxial tensile testing demonstrates that the tensile strength of PC/PET micropart is 15.5% higher than that of the PET micropart, while the toughness is 16% higher than that of the PC microparts. In-situ, high- speed tensile imaging, combined with scanning electron microscopy micrographs of the fracture section, are used to study the fracture behaviors of the microparts. The results gathered in this paper may provide a theoretical basis and data to support the feasibility and efficiency of micro-injection molded polymer blends.
Keywords:micro injection moulding;PC/PET;molecular chain orientation;microstructure;mechanical property
- Maghsoudi K, Jafari R, Momen G, Farzaneh M, Mater. Today Commun., 13, 126 (2017)
- Li M, Yang Q, Kong M, Huang Y, Liao X, Niu Y, Zhao Z, Polym. Adv. Technol., 29, 171 (2018)
- Nie J, Gao Q, Qiu JJ, Sun M, Liu A, Shao L, Fu JZ, Zhao P, He Y, Biofabrication, 10, 035001 (2018)
- Ciofu C, Mindru DT, Int. J. Mod. Manuf. Technol, 3604, 49 (2013)
- Wang L, Zhang Y, Jiang L, Yang X, Zhou Y, Wang X, Li Q, Shen C, Turng LS, J. Appl. Polym. Sci., 136, 47329 (2019)
- Hwang SH, Lee DJ, Youn HR, Song YS, Youn JR, Macromol. Res., 23(9), 844 (2015)
- Hsissou R, Elharfi A, J. King Saud. Univ. Eng. Sci., 32, 235 (2020)
- Zhang H, Fang F, Gilchrist MD, Zhang N, Mater. Des., 177, 107829 (2019)
- Wang L, Li Q, Zhu W, Shen C, Microsyst. Technol., 18, 2085 (2012)
- Hsissou R, Dagdag O, Berradi M, Bouchti M, Assouag M, Elharfi A, Heliyon, 5, 2789 (2019)
- Schiffer A, Kaiser M, U.S. Patent 10,105,887 (2018).
- Babenko M, Sweeney J, Petkov P, Lacan F, Bigot S, Whiteside B, Appl. Therm. Eng., 130, 865 (2018)
- Zhang N, Zhang H, Stallard C, Fang F, Gilchrist MD, CIRP J. Manuf. Sci. Tec., 23, 20 (2018)
- Jiang J, Wang S, Sun B, Ma S, Zhang J, Li Q, Hu GH, Mater. Des., 88, 245 (2015)
- Shi S, Wang L, Pan Y, Liu C, Liu X, Li Y, Zhang J, Zheng G, Guo Z, Compos. B: Eng., 167, 362 (2019)
- Bekhta A, Hsissou R, Elharfi A, Sci. Rep., 10, 2461 (2020)
- Hsissou R, Berradi M, El Bouchti M, El Bachiri A, El Harfi A, Polym. Bull., 76(9), 4859 (2019)
- Jiang J, Wang S, Hou J, Zhang K, Wang X, Li Q, Liu G, Mater. Des., 141, 132 (2018)
- Lee SH, Han TH, Kim SH, Macromol. Res., 22(7), 782 (2014)
- Amininasab SM, Holakooei P, Shami Z, Hassanzadeh M, Macromol. Res., 26(8), 730 (2018)
- Kumar S, Castro M, Pillin I, Feller JF, Thomas S, Grohens Y, Polym. Adv. Technol., 24, 487 (2013)
- Ward IM, Coates PD, Dumoulin MM, Solid Phase Processing of Polymers, Hanser Publishers, Munich, Germany, 2000.
- Zhang N, Choi SY, Gilchrist MD, Macromol. Mater. Eng., 299, 1362 (2014)
- Carrot C, Mbarek S, Jaziri M, Chalamet Y, Raveyre C, Prochazka F, Macromol. Mater. Eng., 292, 693 (2007)
- Kyriacos D, in Brydson’s Plastics Materials, Elsevier, pp 457-485 2017.
- Park SY, Lyu MY, Macromol. Res., 26(8), 744 (2018)
- Shi SY, Pan YM, Lu B, Zheng GQ, Liu CT, Dai K, Shen CY, Polymer, 54(25), 6843 (2013)
- Giboz J, Spoelstra AB, Portale G, Copponnex T, Meijer HEH, Peters GWM, Mele P, J. Polym. Sci. B: Polym. Phys., 49(20), 1470 (2011)
- Chien RD, Jong WR, Chen SC, J. Micromech. Microeng., 15, 1389 (2005)
- Kim SW, Turng LS, Polym. Eng. Sci., 46(9), 1263 (2006)
- Han KH, Jang MG, Juhn KJ, Cho CL, Kim WN, Macromol. Res., 26(3), 254 (2018)
- Al-Jabareen A, Illescas S, Maspoch ML, Santana OO, J. Mater. Sci., 45(24), 6623 (2010)
- Zhao P, Yang W, Wang X, Li J, Yan B, Fu J, Proc. Inst. Mech. Eng. B J. Eng. Manuf., 233, 204 (2019)
- Cheng BF, Wang LH, You YZ, Macromol. Res., 24(9), 811 (2016)
- Boerio F, Bahl S, McGraw G, J. Polym. Sci. B: Polym. Phys., 14, 1029 (1976)
- Andriollo T, Thorborg J, Hattel J, Model. Simul. Mater. Sc., 25, 045004 (2017)
- van Breemen LCA, Engels TAP, Klompen ETJ, Senden DJA, Govaert LE, J. Polym. Sci. B: Polym. Phys., 50(24), 1757 (2012)
- Rambo DAS, Yao Y, de Andrade Silva F, Filho RDT, Mobasher B, Cem. Concr. Compos., 75, 51 (2017)
- Laiarinandrasana L, Selles N, Klinkova O, Morgeneyer TF, Proudhon H, Helfen L, Polym. Test, 55, 297 (2016)
- Pan YM, Shi SY, Xu WZ, Zheng GQ, Dai K, Liu CT, Chen JB, Shen CY, J. Mater. Sci., 49(3), 1041 (2014)
- Hong JH, Haam SJ, Lim GB, Ryu JH, Macromol. Res., 28(3), 257 (2020)