화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.58, No.4, 541-549, August, 2020
GABA를 담지한 자성 키토산 나노입자 제조와 약물의흡수 및 방출 연구
The Preparation of Magnetic Chitosan Nanoparticles with GABA and Drug Adsorption-Release
E-mail:
초록
약물 전달 시스템(Drug Delivery System, DDS)은 인체에 발생한 질환을 치료를 할 때 약물을 효과적으로 투약하므로써 약물성분에 의한 부작용을 최소화하고, 약물의 효능을 최대한으로 크게하기 위해 기존의 알려진 성분의 약물이나 새로운 성분의 제형을 설계하여 환자의 약물치료 과정을 최적화하는 목적을 지향하는 기술로 정의된다. 본 연구에서는 Tripolyphosphate (TPP)의 농도가 키토산과의 가교결합을 통하여 제조되는 Chitosan nanoparticles (CNPs)의 크기에 미치는 영향을 측정하여 TPP의 농도가 낮을수록 작은 크기의 입자가 형성되는 것을 확인하였다. 그리고 산화철(Fe3O4)의 양에 따른 CNPs-Fe3O4의 특성을 측정하여 Fe3O4의 양이 많을수록 자성 약물 전달체로써의 특성이 잘 나타남을 확인하였다. 닌히드린 반응(Ninhydrin test)를 통하여 저농도 구간(0.004~0.02 wt%)에서는 Y = 0.00373 exp (179.729X) - 0.0114 (R2 = 0.989), 고농도 구간(0.02~0.1wt%)에서는 Y = 21.680X - 0.290 (R2 = 0.999) 의 γ-aminobutyric acid (GABA)의 농도에 따른 검량선을 얻었다. 이 검량선을 사용하여 흡수를 위하여 넣어주는 GABA의 양에 따른 최대 흡수율의 관계식 Y = -136.527 exp [(-90.0862)X] + 64.724 (R2 = 0.997) 을 얻었으며, 초기에 넣어주는 GABA의 양이 약 0.04 g인 지점부터는 약 62.5%로 흡수율이 일정해 지고, 시간에 따른 GABA-Fe3O4-CNPs로부터 방출되는 GABA의 양을 측정하여 약 24 hr 이후부터 약물 방출이 종료되는 것을 확인하였다. 또한 최적의 조건에서 만들어진GABA-Fe3O4-CNPs는 약 150 nm의 구형 입자이며, 그에 따른 입자의 특성이 잘 나타나는 것을 확인하여 약물 전달체로써 적합함을 알 수 있었다.
The Drug Delivery System (DDS) is defined as a technology for designing existing or new drug formulations and optimizing drug treatment. DDS is designed to efficiently deliver drugs for the care of diseases, minimize the side effects of drug, and maximize drug efficacy. In this study, the optimization of tripolyphosphate (TPP) concentration on the size of Chitosan nanoparticles (CNPs) produced by crosslinking with chitosan was measured. In addition, the characteristics of Fe3O4-CNPs according to the amount of iron oxide (Fe3O4) were measured, and it was confirmed that the higher the amount of Fe3O4, the better the characteristics as a magnetic drug carrier were displayed. Through the ninhydrin reaction, a calibration curve was obtained according to the concentration of γ-aminobutyric acid (GABA) of Y = 0.00373exp (179.729X)-0.0114 (R2 = 0.989) in the low concentration (0.004 to 0.02 wt%) and Y = 21.680X-0.290 (R2 = 0.999) in the high concentration (0.02 to 0.1 wt%). Absorption was constant at about 62.5% above 0.04 g of initial GABA. In addition, the amount of GABA released from GABA-Fe3O4-CNPs over time was measured to confirm that drug release was terminated after about 24 hr. Finally, GABA-Fe3O4-CNPs performed under the optimal conditions were spherical particles of about 150 nm, and it was confirmed that the properties of the particles appear well, indicating that GABAFe 3O4-CNPs were suitable as drug carriers.
  1. Han TH, Lee HH, Transactions of the Korean Society of Mechanical Engineers B, 34, 67-71(2010).
  2. Singh R, Lillard JW, Exp Mol Pathol., 86, 215 (2009)
  3. Chu WS, Kim SG, Ahn SH, Journal of the Korean Society for Precision Engineering, 23, 125-131(2006).
  4. Allen TM, Cullis PR, Science, 303, 1818 (2004)
  5. Brocchini S, James K, J. Biomed. Mater. Res., 42, 66 (1998)
  6. Ahmed A, Bonner C, Desai TA, J. Control. Release, 81, 291 (2002)
  7. Santini JJT, Richards AC, Scheidt R, Angew. Chem.-Int. Edit., 39, 2396 (2000)
  8. Desai TA, Chu WH, Tu JK, Beattie GM, Hayek A, Ferrari M, Biotechnol. Bioeng., 57(1), 118 (1998)
  9. Reed ML, Wu C, Kneller J, Watkins S, J. Pharm. Sci., 87, 1387 (1998)
  10. James LW, Amit K, Hans AB, Enoch K, George MW, Nanotechnology, 7, 452 (1996)
  11. Lim JW, Kang IJ, Bull. Korean Chem. Soc., 34, 237 (2013)
  12. Dash M, Chiellini F, Ottenbrite RM, Chiellini E, Prog. Polym. Sci, 36, 981 (2011)
  13. Chen L, Subirade M, Biomaterials, 26, 6041 (2005)
  14. Finch CA, Polym. Int., 31, 401 (1993)
  15. Kim BG, Kang IJ, Ultramicroscopy., 108, 1168 (2008)
  16. Pusateri AE, Mccarthy SJ, Gregory KW, Harris RA, Cardenas L, Mcmanus AT, Goodwin CW, J. Trauma, 54, 177 (2003)
  17. Ilium L, Pharm. Res., 15, 1326 (1998)
  18. Dodane V, Vilivalam VD, Pharmaceutical Science & Technology Today, 1, 246-253(1998).
  19. Das B, Mandal M, Upadhyay A, Chattopadhyay P, Karak N, Biomed Mater., 8, 35 (2013)
  20. Gong T, Li W, Chen H, Wang L, Shao S, Zhou S, Acta Biomater, 8, 1248 (2012)
  21. Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, Muldoon LL, Neuwelt EA, J. Cereb. Blood. Flow. Metab., 30, 15 (2010)
  22. Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U, J. Nanopart. Res., 14, 156 (2012)
  23. Gironell A, Figueiras FP, Pagonabarraga J, Herance JR, Pascual-Sedano B, Trampal C, Gispert JD, Parkinsonism Relat Disord., 18, 876 (2012)
  24. Buzzi A, Chikhladze M, Falcicchia C, Paradiso B, Lanza G, Soukupova M, Marti M, Morari M, Franceschetti S, Simonato M, Neurobiol Dis., 47, 216 (2012)
  25. Cho SC, Kim DH, Park CS, Koh JH, Pyun YR, Kook MC, The Korean Journal of Food And Nutrition., 25, 26-31(2012).
  26. Farahmandfar M, Zarrindast MR, Kadivar M, Karimian SM, Naghdi N, Eur. J. Pharmacol., 669, 66 (2011)
  27. Vehovszky A, Bokisch AJ, Krogsgaard-Larsen P, Walker RJ, Comparative Biochemistry and Physiology Part C:Comparative Pharmacology., 92, 391-399(1989).
  28. Moore S, J. Biol. Chem., 243, 6281 (1968)
  29. Yemm EW, Cocking EC, Ricketts RE, The Analyst., 80, 209 (1955)
  30. Lim JW, Kang IJ, Bull. Korean Chem. Soc., 36, 672 (2015)
  31. Lim JW, Kang IJ, Bull. Korean Chem. Soc., 35, 25 (2014)