화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.11, 1867-1877, November, 2020
Non-catalytic oxidative desulfurization of gas condensate by ozone and process optimization using response surface methodology
E-mail:
This study modelled and optimized the oxidative desulfurization of gas condensate with ozone, as a gaseous oxidant. Experiments in this study were non-catalytic, and sulfone extraction was done by acetone. Response surface methodology was applied for the experimental design, mathematical modeling, and optimization using Design-Expert® software. The influence of effective variables and their interaction on the response was also investigated. For the first time, non-catalytic ozonation of this feed was performed on the oxidative desulfurization process. The developed model properly fitted the experimental results. The accuracy of the model was confirmed, while this model predicted 95% desulfurization would result in the optimized conditions, and the actual value of desulfurization obtained was 95.8%. Further, the results indicated interaction between the superficial gas velocity of ozone and coefficient of oxidant-to-sulfur molar ratio. GC-SCD revealed that DBT was the most refractory component in comparison with the other sulfur components in the gas condensate. It was also found that 84.3% desulfurization occurred just with oxidation and sedimentation of sulfones and without solvent extraction.
  1. Kang L, Liu HY, He HJ, Yang CP, Fuel, 234, 1229 (2018)
  2. Safa MA, Al-Majren R, Al-Shamary T, Park JI, Ma XL, Fuel, 194, 123 (2017)
  3. Chen K, Zhang XM, Yang XF, Jiao MG, Zhou Z, Zhang MH, Wang DH, Bu XH, Appl. Catal. B: Environ., 238, 263 (2018)
  4. Ghaedian M, Bazmi M, Shafeghat A, Mohammadi AK, Rabiei Z, Naderi F, Pet. Coal, 55, 361 (2013)
  5. Babich IV, Moulijn JA, Fuel, 82(6), 607 (2003)
  6. Yang C, Ji HW, Chen CC, Ma WH, Zhao JC, Appl. Catal. B: Environ., 235, 207 (2018)
  7. Qian EW, J. Jpn. Pet. Inst., 51, 14 (2008)
  8. Zhang Y, Li G, Kong LH, Lu H, Fuel, 219, 103 (2018)
  9. Ma XL, Zhou AN, Song CS, Catal. Today, 123(1-4), 276 (2007)
  10. Campos-Martin JM, Capel-Sanchez MC, Perez-Presas P, Fierro JLG, J. Chem. Technol. Biotechnol., 85(7), 879 (2010)
  11. Alibolandi M, Ghaedian M, Shafeghat A, Royaee SJ, Darian JT, J. Sci. I. R., 31, 13 (2020)
  12. Han X, Wang A, Wang X, Li X, Wang Y, Hu Y, Catal. Commun., 42, 6 (2013)
  13. Wang JY, Zhang LH, Sun YL, Jiang B, Chen Y, Gao X, Yang HW, Fuel Process. Technol., 177, 81 (2018)
  14. Imtiaz A, Waqas A, Muhammad I, Chin. J. Catal., 34, 1839 (2013)
  15. Zhou XR, Li J, Wang XN, Jin K, Ma W, Fuel Process. Technol., 90(2), 317 (2009)
  16. Li SW, Gao RM, Zhao JS, Fuel, 237, 840 (2019)
  17. Zeng XY, Xiao XY, Li Y, Chen JY, Wang HL, Appl. Catal. B: Environ., 209, 98 (2017)
  18. Sundararaman R, Ma XL, Song CS, Ind. Eng. Chem. Res., 49(12), 5561 (2010)
  19. Li SW, Li JR, Gao Y, Liang LL, Zhang RL, Zhao JS, Fuel, 197, 551 (2017)
  20. Sampanthar JT, Xiao H, Dou H, Nah TY, Rong X, Kwan WP, Appl. Catal. B: Environ., 63(1-2), 85 (2006)
  21. Wang J, Zhao D, Li K, Energy Fuels, 24, 2527 (2010)
  22. Wang LK, Hung YT, Lo HH, Yapijakis C, Handbook of industrial and hazardous waste treatment, 2nd Ed., Taylor & Francis e-Library, New York (2006).
  23. Zhang W, Xie G, Gong Y, Zhou D, Zhang C, Ji Q, J. Chem. Eng. Jpn., 53, 68 (2020)
  24. Ma C, Dai B, Liu P, Zhou N, Shi A, Ban L, Chen H, J. Ind. Eng. Chem., 20, 2769 (2013)
  25. Pouladi B, Fanaei MA, Baghmisheh G, J. Clean Prod., 209, 965 (2019)
  26. Akopyan AV, Grigoriev DA, Polikarpova PL, Eseva EA, Litvinova VV, Anisimov AV, Petrol. Chem., 57, 904 (2017)
  27. Akbari A, Chamack M, Omidkhah M, J. Mater. Sci., 55(15), 6513 (2020)
  28. Ban LL, Liu P, Ma CH, Dai B, Catal. Today, 211, 78 (2013)
  29. Wu P, Wu Y, Chen L, HeJ, Hua M, Zhu F, Chu X, Xiong J, He M, Zhu W, Li H, Chem. Eng. J., 380, 122526 (2020)
  30. Samaranayake WJM, Miyahara Y, Namihira T, Katsuki S, Hackaml R, Akiyama H, IEEE Trans. Dielectr. Electr. Insul., 7, 849 (2000)
  31. Eliasson B, Hirth M, Kogelschatz U, J. Phys. D-Appl. Phys., 20, 1421 (1987)
  32. Sehested K, Cotfltzen H, Holcman J, Flscher CH, Hart EJ, Environ. Sci. Technol., 25, 1589 (1991)
  33. Flamm DL, Environ. Sci. Technol., 11, 978 (1977)
  34. Chen WM, Hong W, Geng JF, Wu XS, Ji W, Li LY, Qui L, Jin X, Phys. C, 270, 349 (1996)
  35. Makela M, Energy Conv. Manag., 151, 630 (2017)
  36. Montgomery DC, Design and analysis of experiments, 6th Ed., Wiley, United States (2005).
  37. Lin F, Wang Z, Shao J, Yuan D, He Y, Zhu Y, Cen K, Chin. J. Catal., 38, 1270 (2017)
  38. Ismagilov Z, Yashnik S, Kerzhentsev M, Parmon V, Bourane A, Al-Shahrani FM, Hajji AA, Koseoglu OR, Catal. Rev.-Sci. Eng., 53(3), 199 (2011)
  39. Kantarci N, Borak F, Ulgen KO, Process Biochem., 40(7), 2263 (2005)
  40. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA, Talanta, 76, 965 (2008)
  41. Moaseri E, Shahsavand A, Bazubandi B, Energy Fuels, 28(2), 825 (2014)
  42. Li SW, Gao RM, Zhang W, Zhang Y, Zhao JS, Fuel, 221, 1 (2018)
  43. Dizaji AK, Mortaheb HR, Mokhtarani B, Chem. Eng. J., 335, 362 (2018)
  44. Bird RB, Stewart WE, Lightfoot EN, Transport phenomena, 2nd Ed., Wiley, United States (2001).
  45. Wang B, Zhu JP, Ma HZ, J. Hazard. Mater., 164(1), 256 (2009)