화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.11, 1975-1984, November, 2020
Fast and effective methylene blue adsorption onto graphene oxide/amberlite nanocomposite: Evaluation and comparison of optimization techniques
E-mail:
Since graphene is a miracle material of the 21st century, a considerable number of researchers have studied the oxidation of graphite to synthesize graphene oxide and its applications. In this study, polymeric resin (amberlite XAD7HP) supported graphene oxide (GO) nanocomposite was synthesized successfully. Analytical methods, namely Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were utilized to characterize the new structure. Methylene blue (MB) solution was selected as a model discharged textile wastewater for adsorption application of synthesized nanocomposite. The adsorption data were modelled by response surface methodology (RSM), random forest (RF) and artificial neural networks (ANN) methods. The optimal condition parameters, which maximize the adsorption uptake capability, were determined by the genetic algorithm. Statistical errors and correlation coefficient values of each developed model were calculated independently to compare models’ performance. According to the results, the developed RF model outperformed the other models. On the other hand, the ANN model had the lowest correlation coefficient value among the models.
  1. Yusuf M, Handbook of renewable materials for coloration and finishing, Wiley-VCH, Weinheim (2018).
  2. Ali H, Water Air Soil Pollut., 213, 251 (2010)
  3. Hu TL, Wu SC, Bioresour. Technol., 77(1), 93 (2001)
  4. Bhattacharyya KG, Sharma A, Dyes Pigment., 65, 51 (2005)
  5. Sabarinathan C, Karuppasamy P, Vijayakumar CT, Arumuganathan T, Microchem. J., 146, 315 (2019)
  6. Saeed M, Muneer M, Akram N, ul Haq A, Afzal N, Hamayun M, Chem. Eng. Res. Des., 148, 218 (2019)
  7. Xia G, Lu Y, Gao X, Gao C, Xu H, Clean Soil Air Water., 43, 229 (2015)
  8. Golder AK, Samata AN, Ray S, J. Hazard. Mater., 127, 140 (2005)
  9. Afshariani F, Roosta A, J. Clean Prod., 225, 133 (2019)
  10. Ghaedi M, Mortazavi K, Jamshidi K, Roosta M, Karami B, Toxicol. Environ. Chem., 94, 846 (2012)
  11. Ertas M, Acemioglu B, Alma MH, Usta M, J. Hazard. Mater., 183(1-3), 421 (2010)
  12. Nunez SC, Yoshimura TM, Ribeiro MS, Junqueria HC, Maciel C, Countinhoneto MD, Baptista MS, J. Photochem. Photobiol. B-Biol., 150, 31 (2015)
  13. Abd EI-Latif MM, Ibrahim AM, EI-Kady MF, J Am Sci., 6(6), 267 (2010)
  14. Ghosh D, Bhattacharyya KG, Appl. Clay Sci., 20, 295 (2002)
  15. Lewis RJ, Sax's dangerous properties of industrial materials, 11th Ed. Wiley-Interscience Publication, Wiley & Hoboken, New Jersey (2004).
  16. Wilson NR, Pandey PA, Bealand R, Young RJ, Kinloch IA, Gong L, Sloan J, ACS Nano., 3, 2547 (2009)
  17. Ma HL, Zhang Y, Hu QH, Yan D, Yu ZZ, Zhai M, J. Mater. Chem., 22, 5914 (2012)
  18. Dabrowski A, Podkoscienly P, Hubicki Z, Barzak M, Chemosphere, 58(8), 1049 (2005)
  19. Islam A, Laskar MA, Ahmad A, Environ. Monit. Assess., 175, 201 (2011)
  20. Myers RH, et al., Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons, USA (2016).
  21. Camposeco-Negrete C, J. Clean Prod., 91, 109 (2015)
  22. Ghaedi M, Daneshfar A, Ahmadi A, Momeni MS, J. Ind. Eng. Chem., 21, 587 (2015)
  23. Cao R, Fan M, Hu J, Ruan W, Xiong K, Wei X, Materials, 10, 1279 (2017)
  24. Cao R, Fan M, Hu J, Ruan W, Wu X, Wei X, Materials, 11, 428 (2018)
  25. Fan M, Hu J, Cao R, Xiong K, Wei X, Sci. Rep., 7, 18040 (2017)
  26. Sun L, Guo Y, Fu C, Li J, Li Z, Food Chem., 136, 1022 (2013)
  27. Montgomery DC, Design and analysis of experiments, John Wiley & Sons, New York (2017).
  28. Box GE, Draper NR, Empirical model-building and response surfaces, John Wiley & Sons, New York (1987).
  29. Box G, et al., Statistics for experimenters. An introduction to desing, data analysis, and model building, Wiley, New York (1978).
  30. Morgan JN, Messenger RC, Ann Arbor, Survey Research Center, Institute for Social Research, University of Michigan (1973).
  31. Breiman L, Friedman J, Stone CJ, Olshen RA, Classification and regression trees, CRC Press, New York (1984).
  32. Kumar PS, Ramalingam S, Sathishkumar K, Korean J. Chem. Eng., 28(1), 149 (2011)
  33. Han X, Niu X, Ma X, Korean J. Chem. Eng., 29(4), 494 (2012)
  34. Liu T, Li Y, Du Q, Sun J, Jiao Y, Yang G, Wang Z, Xia Y, Zhang W, Wang K, Zhu H, Wu D, Colloids Surf. B: Biointerfaces, 90, 197 (2012)
  35. Wu FC, Tseng RL, Juang RS, Water Res., 35, 613 (2001)
  36. Wu CH, J. Hazard. Mater., 144(1-2), 93 (2007)
  37. Liu Y, Zheng Y, Wang A, Adsorpt. Sci. Technol., 28, 913 (2010)
  38. Auta M, Hameed BH, Chem. Eng. J., 175, 233 (2011)
  39. Liu Y, Wang JT, Zheng Y, Wang AQ, Chem. Eng. J., 184, 248 (2012)
  40. Sapawe N, Jalil AA, Triwahyono S, Shah MIA, Jusoh R, Salleh NFM, Hameed BH, Karim AH, Chem. Eng. J., 229, 388 (2013)
  41. Ghaedi M, Ghazanfarkhani MD, Khodadoust S, Sohrabi N, Oftade M, J. Ind. Eng. Chem., 20(4), 2548 (2014)
  42. Ahmed MJ, Theydan SK, J. Anal. Appl. Pyrolysis, 105, 199 (2014)
  43. Xin-hui D, Srinivasakannan C, Jin-sheng L, J. Taiwan Inst. Chem. E, 45, 1618 (2014)
  44. Duan XH, Zhang ZB, Srinivasakannan C, Wang F, Liang JS, Chem. Eng. Res. Des., 92(7), 1249 (2014)
  45. Junior OP, Cazetta AL, Gomes RC, Barizao EO, Souza IPAF, Martins AC, Asefa T, Almeida VC, J. Anal. Appl. Pyrolysis, 105, 166 (2014)
  46. Mazaheri H, Ghaedi M, Hajati S, Dashtiana K, Purkaitc MK, RSC Adv., 5, 83427 (2015)
  47. Asfaram A, Ghaedi M, Hajati S, Rezaeinejad M, Goudarzi A, Purkait MK, J. Taiwan Inst. Chem. E, 53, 80 (2015)
  48. Setiabudi HD, Jusoh R, Suhaimi SFRM, Masrur SF, J. Taiwan Inst. Chem. E., 63, 363 (2016)
  49. Azzaz AA, et al., 7th International Renewable Energy Congress (IREC), Hammamet, 1-5 (2016).
  50. Pirsaheb M, Rezai Z, Mansouri AM, Rastegar A, Alahabadi A, Sani AR, Sharafi K, Desalin. Water Treat., 57, 5888 (2016)
  51. Tehrani MS, Zare-Dorabei R, RSC Adv., 6, 27416 (2016)
  52. Islam MA, Sabar S, Benhouria A, Khanday WA, Asif M, Hameed BH, J. Taiwan Inst. Chem. E, 74, 96 (2017)
  53. Anfar Z, El Haouti R, Lhanafi S, Benafqir M, Azougarh Y, El Alem N, J. Environ. Chem. Eng., 5, 5857 (2017)
  54. Ardekani PS, Karimi H, Ghaedi M, Asfaram A, Purkait MK, J. Mol. Liq., 229, 114 (2017)
  55. Lingamdinne LP, Singh J, Choi JS, Chang YY, Yang JK, Karri RR, Koduru JK, J. Mol. Liq., 265, 416 (2018)
  56. Mahmoodi-Babolan N, Heydari A, Nematollahzadeh A, Bioresour. Technol., 294, 122084 (2019)
  57. Igwegbe CA, Mohmmadi L, Ahmadi S, Rahdar A, Khadkhodaiy D, Dehghani R, Rahdar S, MethodsX, 6, 1779 (2019)
  58. Hasan R, Chong CC, Setiabudi HD, Jusoh R, Jalil AA, Environ. Technol. Innovation, 13, 62 (2019)
  59. Ramezani F, Zare-Dorabei R, Polyhedron, 166, 153 (2019)