화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.32, No.4, 243-249, November, 2020
Controlling the emulsion stability of cosmetics through shear mixing process
E-mail:
The manipulation of emulsion stability for kinetically sustainable cosmetic emulsions is an important technology in cosmetic industry, however the relationship between emulsifying process and long-term emulsion stability has not been elucidated. Herein, the effect of shear mixing process on the stability of oil-in-water cosmetic emulsions is investigated by varying the shear mixing rate, emulsification time, and water phase temperature. The analysis on droplet size distribution and shear viscosity revealed that the strong viscous forces at optimal shear mixing rate of 4000 rpm afforded the fine and uniform droplets for cosmetic emulsions, leading to the improvement of long-term emulsion stability. Moreover, since the prolonged shear mixing induced the destabilization of emulsion droplets through droplet coalescence, optimal shear mixing time of 3 min could improve the kinetic stability of cosmetic emulsions. The dependence of long-term emulsion stability on emulsification temperature was relatively low. The theoretical analysis using the Derjaguin-Landau-Verwey-Overbeek theory demonstrated that the shear mixing rate played a major role in sustaining fine and uniform cosmetic emulsions with long-term stability. The present study can greatly contribute to the fabrication of functional cosmetic emulsions with long-term stability by controlling the shear mixing parameters in simple emulsification process.
  1. Bilati U, Allemann E, Doelker E, Pharm. Dev. Technol., 8, 9 (2003)
  2. Bostrom M, Deniz V, Franks GV, Ninham BW, Adv. Colloid Interface Sci., 123, 5 (2006)
  3. Chanamai R, McClements DJ, J. Colloid Interface Sci., 225(1), 214 (2000)
  4. Dukhin SS, Sjoblom J, Wasan DT, Sæther O, Colloids Surf. A: Physicochem. Eng. Asp., 180, 223 (2001)
  5. Dyab AKF, Colloids Surf. A: Physicochem. Eng. Asp., 402, 2 (2012)
  6. Gilbert L, Picard C, Savary G, Grisel M, Colloids Surf. A: Physicochem. Eng. Asp., 421, 150 (2013)
  7. Glampedaki P, Dutschk V, Colloids Surf. A: Physicochem. Eng. Asp., 460, 306 (2014)
  8. Goodarzi F, Zendehboudi S, Can. J. Chem. Eng., 97(1), 281 (2019)
  9. Gullapalli RP, Sheth BB, Eur. J. Pharm. Biopharm., 48, 233 (1999)
  10. Kaganyuk M, Mohraz A, Langmuir, 35(39), 12807 (2019)
  11. Kong L, Beattie JK, Hunter RJ, Colloids Surf. B: Biointerfaces, 27, 11 (2003)
  12. Kumar S, Narsimhan G, Ramkrishna D, Ind. Eng. Chem. Res., 35(9), 3155 (1996)
  13. Liu C, An F, He H, He D, Wang Y, Song H, Colloids Surf. A: Physicochem. Eng. Asp., 556, 185 (2018)
  14. Lupi FR, Gentile L, Gabriele D, Mazzulla S, Baldino N, de Cindio B, J. Colloid Interface Sci., 459, 70 (2015)
  15. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM, J. Phys.-Condes. Matter, 18, 635 (2006)
  16. Mine Y, Shimizu M, Nakashima T, Colloids Surf. B: Biointerfaces, 6, 261 (1996)
  17. Nii S, Kikumoto S, Tokuyama H, Ultrason. Sonochem., 16, 145 (2009)
  18. Ontiveros JF, Pierlot C, Catte M, Molinier V, Salager JL, Aubry JM, Colloids Surf. A: Physicochem. Eng. Asp., 458, 32 (2014)
  19. Ozturk B, McClements DJ, Curr. Opin. Food Sci., 7, 1 (2016)
  20. Pal R, Colloids Surf. A: Physicochem. Eng. Asp., 71, 173 (1993)
  21. Pal R, AIChE J., 42(11), 3181 (1996)
  22. Pal R, J. Colloid Interface Sci., 225(2), 359 (2000)
  23. Princen HM, J. Colloid Interface Sci., 105, 150 (1985)
  24. Rayner M, Marku D, Eriksson M, Sjoo M, Dejmek P, Wahlgren M, Colloids Surf. A: Physicochem. Eng. Asp., 458, 48 (2014)
  25. Shields M, Ellis R, Saunders BR, Colloids Surf. A: Physicochem. Eng. Asp., 178, 265 (2001)
  26. Tadros TF, Colloids Surf. A: Physicochem. Eng. Asp., 91, 39 (1994)
  27. Tal-Figiel B, Chem. Eng. Res. Des., 85(A5), 730 (2007)
  28. Tcholakova S, Denkov ND, Ivanov IB, Campbell B, Adv. Colloid Interface Sci., 123, 259 (2006)
  29. Toro-Mendoza J, Petsev DN, Phys. Rev. E, 81, 051404 (2010)
  30. Urbina-Villalba G, Int. J. Mol. Sci., 10(3), 761 (2009)