- Previous Article
- Next Article
- Table of Contents
Macromolecular Research, Vol.28, No.11, 1046-1053, October, 2020
In Situ Microfluidic Preparation and Solidification of Alginate Microgels
E-mail:
Biomimetic fabrication of alginate beads has promising applications in the field of synthetic bioarchitecture. Combining microfluidic technology with in situ gelation enables the creation of alginate microgels with precisely tunable size, as well as allowing control of the crosslinking process. Owing to the wide range of applications of alginate microgel beads, this study aimed to develop various microfluidic models for the generation of such beads by investigating the influence of several parameters on their morphologies and dispersity. Four types of glass microfluidic chips with flow focusing or co-flowing droplet generators were used to continuously form alginate droplets, with the possibility of either internal or external alginate gelation by a cross-linking agent supplied by a microfluidic channel. In all four models, alginate was used at a fixed concentration, Span 80 was used as a surfactant to improve the long-term stability of the beads, either mineral oil or oleic acid was used as a continuous phase, and either calcium carbonate (CaCO3) or calcium chloride (CaCl2) was used as a crosslinking agent. The generated beads exhibited various architectures, including individual monodisperse or polydisperse beads, small clusters, and multicompartment systems. The results of the study revealed the importance of microfluidic design and gelation strategy for the generation of stable polymeric architectures. The current study proposes a simple user’s guide to create alginate microgels in various architectures. The fabricated biomimetic models in the form of polymeric-based vesicles can be further exploited in several applications, including cell-like structures, tissue engineering, and cell and drug encapsulation. Additional investigations will be needed, however, to improve these models so that they more closely resemble the natural structures of cells and tissues.
- Rothman JE, Lenard J, Science, 195, 743 (1977)
- Devaux PF, Biochemistry, 30, 1163 (1991)
- Damiati S, Biological, Springer, Singapore, pp 3-27 2018.
- Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K, Chem. Soc. Rev., 47, 8572 (2018)
- Martino C, Kim SH, Horsfall L, Abbaspourrad A, Rosser SJ, Cooper J, Weitz DA, Angew. Chem.-Int. Edit., 51, 6416 (2012)
- Guarino V, Altobelli R, della Sala F, Borzacchiello A, Ambrosio L, in Alginates and Their Biomedical Applications, Springer, Singapore, Chap. 4 2018.
- Zhang XY, Zhang PY, Curr. Med. Chem., 13, 124 (2017)
- Drotleff S, Lungwitz U, Breunig M, Dennis A, Blunk T, Tessmar J, Gopferich A, Eur. J. Pharm. Biopharm., 58, 385 (2004)
- Kamat NP, Katz JS, Hammer DA, J. Phys. Chem. Lett., 2, 1612 (2011)
- Montalbano G, Toumpaniari S, Popov A, Duan P, Chen J, Dalgarno K, Scott WE, Ferreira AM, Sci. Eng. C, 91, 236 (2018)
- Sang L, Luo D, Xu S, Wang X, Li X, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 31, 262 (2011)
- Stratton S, Shelke NB, Hoshino K, Rudraiah S, Kumbar SG, Bioact. Mater., 1, 93 (2016)
- Remminghorst U, Rehm BHA, Biotechnol. Lett., 28(21), 1701 (2006)
- Mancini M, Moresi M, Rancini R, J. Food Eng., 39(4), 369 (1999)
- Drury JL, Dennis RG, Mooney DJ, Biomaterials, 25, 3187 (2004)
- Leong JY, Lam WH, Ho KW, Woo WP, Lee MFX, Lim HP, Lim SL, Tey BT, Poncelet D, Chan ES, Particuology, 24, 44 (2016)
- Wang Q, Liu S, Wang H, Zhu J, Yang Y, Colloids Surf. A: Physicochem. Eng. Asp., 482, 371 (2015)
- Caetano LA, Almeida AJ, Goncalves LM, Mar. Drugs, 14, 90 (2016)
- Singh V, Singh A, Alginates, Apple Academic Press, Oakville, 2019.
- Li J, Mooney DJ, Nat. Rev. Mater., 1, 16071 (2016)
- Damiati S, Kompella UB, Damiati SA, Kodzius R, Genes, 9, 103 (2018)
- Damiati S, Mhanna R, Kodzius R, Ehmoser EK, Genes, 9, 144 (2018)
- Martino C, Lee TY, Kim SH, deMello AJ, Biomicrofluidics, 9, 024101 (2015)
- Elani Y, Biochem. Soc. Trans., 44, 723 (2016)
- Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, et al., Mater. Today, 11, 18 (2008)
- Mark D, Haeberle S, Zengerle R, Ducree J, Vladisavljevic GT, J. Colloid Interface Sci., 336(2), 634 (2009)
- Ching SH, Bansal N, Bhandari B, Crit. Rev. Food Sci. Nutr., 57, 1133 (2017)
- Lee KY, Mooney DJ, Prog. Polym. Sci., 37, 106 (2012)
- Workman VL, Dunnett SB, Kille P, Palmer DD, Biomicrofluidics, 1, 014105 (2007)
- Hu Y, Azadia G, Ardekani AM, Carbohydr. Polym., 120, 38 (2015)
- Bardin D, Martz TD, Sheeran PS, Shih R, Dayton PA, Lee AP, Lab Chip, 11, 3990 (2011)
- De La Vega JC, Elischer P, Schneider T, Hafeli UO, Nanomedicine, 8, 265 (2013)
- Tan WH, Takeuchi S, Adv. Mater., 19(18), 2696 (2007)
- Silva CM, Ribeiro JM, Figueiredo IV, Goncalves AR, Veiga F, Int. J. Pharm., 311, 1 (2006)
- Wehking JD, Gabany M, Chew L, Kumar R, Microfluid. Nanofluid., 16, 441 (2014)
- Gurikov P, Smirnova I, Gels, 4, 14 (2018)
- Teston E, Hingot V, Faugeras V, Errico C, Bezagu M, Tanter M, Couture O, Biomed. Microdevices, 20, 94 (2018)
- Vladisavljevic GT, Kobayashi I, Nakajima M, Microfluid. Nanofluid., 10, 1199 (2011)
- Amstad E, Chemama M, Eggersdorfer M, Arriaga LR, Brenner MP, Weitz DA, Lab Chip, 16, 4163 (2016)
- Choi CH, Jung JH, Rhee YW, Kim DP, Shim SE, Lee CS, Biomed. Microdevices, 9, 855 (2007)
- Parreidt TS, Schott M, Schmid M, Muller K, Int. J. Mol. Sci., 19, 742 (2018)
- Golmohammadi F, Amiri M, Gharibi H, Yousefi A, Safari M, J. Solution Chem., 49, 16 (2020)
- Kovalchuk NM, Roumpea E, Nowak E, Chinaud M, Angeli P, Simmons MJH, Chem. Eng. Sci., 176, 139 (2018)
- Ching SH, Bansal N, Bhandari B, Crit. Rev. Food Sci. Nutr., 57, 1133 (2017)
- Padoł AM, Maurstad G, Draget KI, Stokke BT, Carbohydr. Polym., 133, 126 (2015)
- Damiati S, Biomed. Microdevices, 21, 62 (2019)
- Abdi SIH, Ng SM, Choi JY, Seo JM, Lim JO, Macromol. Rapid Commun., 18, 668 (2010)