화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.12, 2094-2103, December, 2020
Experiment and multiphase CFD simulation of gas-solid flow in a CFB reactor at various operating conditions: Assessing the performance of 2D and 3D simulations
E-mail:,
Accurate prediction of gas-solid flow hydrodynamics is key for the design, optimization, and scale-up of a circulating fluidized bed (CFB) reactor. Computational fluid dynamics (CFD) simulation with two-dimensional (2D) domain has been routinely used, considering the computational costs involved in three-dimensional (3D) simulations. This work evaluated the prediction capability of 2D and 3D gas-solid flow simulation in the lab-scale CFB riser section. The difference between 2D and 3D CFD simulation predictions was assessed and discussed in detail, considering several flow variables (superficial gas velocity, solid circulation rate, and secondary air injection). The transient Eulerian- Eulerian multiphase model was used. CFD simulation results were validated through an in-house experiment. The comparison between the experimental data and both computational domains shows that the 3D simulation can accurately predict the axial solid holdup profile. The CFD simulation comparison considering several flow conditions clearly indicated the limitation of the 2D simulation to accurately predict key hydrodynamic features, such as high solid holdup near the riser exit and riser bottom dense region. The accuracy of 2D and 3D simulations was further assessed using root-mean-square error calculation. Results indicated that the 3D simulation predicts flow behavior with higher accuracy than the 2D simulation.
  1. Berruti F, Chaouki J, Godfroy L, Pugsley TS, Patience GS, Can. J. Chem. Eng., 73, 569 (1995)
  2. Knowlton TM, Knowlton TM, Knowlton TM, Circulating fluidized beds, Blackie Academic & Professional, London, UK (1997).
  3. Hartge EU, Li Y, Werther J, in Circulating fluidized bed technology, Pergamon Press, Toronto (1986).
  4. Wang J, Chem. Eng. Sci., 215, 115428 (2020)
  5. Li TW, Benyahia S, Dietiker JF, Musser J, Sun X, Chem. Eng. Sci., 123, 236 (2015)
  6. Cloete S, Johansen ST, Amini S, Powder Technol., 239, 21 (2013)
  7. Cloete JH, Cloete S, Radl S, Amini S, Powder Technol., 303, 156 (2016)
  8. Shah MT, Utikar RP, Pareek VK, Tade MO, Evans GM, Powder Technol., 269, 247 (2015)
  9. Shah S, Ritvanen J, Hyppanen T, Kallio S, Powder Technol., 218, 131 (2012)
  10. Peirano E, Delloume V, Leckner B, Chem. Eng. Sci., 56(16), 4787 (2001)
  11. Cammarata L, Lettieri P, Micale GDM, Colman D, Int. J. Chem. Reactor Eng., 1, A48 (2003)
  12. Reuge N, Cadoret L, Coufort-Saudejaud C, Pannala S, Syamlal M, Caussat B, Chem. Eng. Sci., 63(22), 5540 (2008)
  13. Asegehegn TW, Schreiber M, Krautz HJ, Powder Technol., 219, 9 (2012)
  14. Xie N, Battaglia F, Pannala S, Powder Technol., 182(1), 1 (2008)
  15. Xie N, Battaglia F, Pannala S, Powder Technol., 182(1), 14 (2008)
  16. Bakshi A, Altantzis C, Bershanska A, Stark AK, Ghoniem AF, Powder Technol., 332, 114 (2018)
  17. Cardoso J, Silva V, Eusebio D, Brito P, Boloy RM, Tarelho L, Silveira JL, Renew. Energy, 131, 713 (2019)
  18. Chang J, Wu ZJ, Wang X, Liu WY, Powder Technol., 351, 159 (2019)
  19. Li TW, Pannala S, Shahnam M, Powder Technol., 254, 115 (2014)
  20. Cho YJ, Namkung W, Kim SD, Park SW, J. Chem. Eng. Jpn., 27(2), 158 (1994)
  21. Ersoy LE, Golriz MR, Koksal M, Hamdullahpur F, Powder Technol., 145(1), 25 (2004)
  22. Koksal M, Hamdullahpur F, Chem. Eng. Res. Des., 82(8), 979 (2004)
  23. Namkung W, Kim SD, Powder Technol., 113(1-2), 23 (2000)
  24. Smolders K, Baeyens J, Powder Technol., 119(2-3), 269 (2001)
  25. Li J, Tung Y, Kwauk M, in Circulating fluidized bed technology II, Pergamon Press, New York, U.S.A. (1988).
  26. Harris AT, Davidson JF, Thorpe RB, AIChE J., 49(1), 52 (2003)
  27. De Wilde J, Marin GB, Heynderickx GJ, Chem. Eng. Sci., 58(3-6), 877 (2003)
  28. Gupta SK, Berruti F, Powder Technol., 108(1), 21 (2000)
  29. Takeuchi H, Hirama T, Chiba T, Biswas J, Leung LS, Powder Technol., 47, 195 (1986)
  30. Arena U, Cammarota A, Pistone L, in Circulating fluidized bed technology, Pergamon Press, Toronto (1986).
  31. Anderson TB, Jackson R, Ind. Eng. Chem. Fundam., 6, 527 (1967)
  32. Upadhyay M, Park JH, Powder Technol., 272, 260 (2015)
  33. Benyahia S, Syamlal M, O'Brien TJ, Powder Technol., 156(2-3), 62 (2005)
  34. Jin B, Wang X, Zhong W, Tao H, Ren B, Xiao R, Energy Fuels, 24, 3159 (2010)
  35. Zhang YW, Lei FL, Wang SD, Xu X, Xiao YH, Powder Technol., 280, 227 (2015)
  36. Johnson PC, Jackson R, J. Fluid Mech., 176, 67 (1987)
  37. Upadhyay M, Seo MW, Nho NS, Park JH, Comp. Aided Chem. Eng., 37, 695 (2015)
  38. Andrews AT, Loezos PN, Sundaresan S, Ind. Eng. Chem. Res., 44(16), 6022 (2005)
  39. Shah MT, Utikar RP, Tade MO, Pareek VK, Chem. Eng. J., 168(2), 812 (2011)
  40. Kang Y, Song PS, Yun JS, Jeong YY, Kim SD, Chem. Eng. Commun., 177, 31 (2000)
  41. Koksal M, Hamdullahpur F, Chem. Eng. Commun., 192(9), 1151 (2005)
  42. Naren PR, Ranade VV, Particuology, 9, 121 (2011)