화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.6, 784-789, November, 2020
한 용기 내 중합반응에 의한 금 나노입자를 함유한 PEG 수화젤 입자의 합성
Preparation of Poly(ethylene glycol) Hydrogel Particles Containing Gold Nanoparticles by In Situ Polymerization
E-mail:
초록
금 입자와 고분자 입자를 결합한 유무기 복합재료를 컴퓨터단층촬영(CT)의 조영제로 사용하기 위한 첫 단계로, PEG 수화젤 입자 내부에 금 나노입자를 고농도로 탑재하여 최종적으로 합성된 Au-PEG 수화젤 입자의 CT세기를 향상시킬 수 있는 합성방법을 개발하였다. 다양한 방법을 이용하여 Au-PEG 수화젤 입자를 제조한 결과, PEG 수화젤 입자를 중합하는 동안 금 나노입자를 수화젤 내부에 탑재하는 한 용기내 중합(in situ 법)을 사용할 경우, 가장 높은 CT세기를 보이고 탑재된 금 입자가 수화젤로부터 방출되지 않는 안정적인 Au-PEG 수화젤 입자를 합성할 수 있었다. In situ법을 사용하여 입자를 제조할 경우, 투입한 금 전구체의 농도가 증가할수록 그리고 중합과정에서 1차 중합시간이 증가할수록, 합성된 Au-PEG 수화젤 입자의 CT세기가 증가하였으며, 비이온성 계면활성제를 분산안정제로 사용할 경우, 가장 높은 CT세기를 가지는 입자를 제조할 수 있었다.
As the first step to use an organic/inorganic composite combining gold nanoparticles (AuNPs) and polymer particles as a contrast agent for computed tomography (CT), PEG hydrogel particles containing AuNPs, Au-PEG hydrogel particles, were prepared and the synthetic conditions were established to improve the CT intensity of the Au-PEG hydrogel particles. Au-PEG hydrogel particles that had the highest CT intensity were obtained and the encapsulated AuNPs were not released from the hydrogel particles when Au-PEG hydrogel particles were synthesized by in situ polymerization with which the AuNPs were loaded in the PEG hydrogel particles during the polymerization. The CT intensity of the Au-PEG hydrogel particles increased, as the concentration of the loaded AuNPs and the 1st polymerization time of the polymerization process increased. In addition, when the non-ionic surfactant was used as a dispersion stabilizer, Au-PEG hydrogel particles showed good dispersibility and the highest CT density.
  1. Mahouche-Chergui S, Guerrouache M, Carbonnier B, Chehimi MM, Colloids Surf. A: Physicochem. Eng. Asp., 439, 43 (2013)
  2. Xu S, Zhang J, Kumacheva E, Compos. Interfaces, 10, 405 (2003)
  3. Farah AA, Bravo-Vasquez JP, Alvarez-Puebla RA, Cho J, Fenniri H, Small, 5, 1283 (2009)
  4. Wang C, Flynn NT, Langer R, Adv. Mater., 16(13), 1074 (2004)
  5. Kemmerer SR, Mortele KJ, Ros PR, Radiol. Clin. North Am., 36, 247 (1998)
  6. Leander P, Hoglund P, Borseth A, Kloster Y, Berg A, Eur. Radiol., 11, 698 (2001)
  7. Baron RL, Am. J. Roentgenol., 163, 323 (1994)
  8. Dai X, Schlemmer HP, Schmidt B, Hoh K, Xu K, Ganten TM, Ganten MK, Eur. J. Radiol., 82, 327 (2013)
  9. Shin H, Cho Y, Lee K, Lee C, Choi BW, Kim B, J. Liposome Res., 24, 124 (2014)
  10. Zheng J, Liu J, Dunne M, Jaffray DA, Allen C, Pharm. Res., 24, 1193 (2007)
  11. Katayama H, Spinazzi A, Fouillet X, Kirchin MA, Taroni P, Davies A, Invest. Radiol., 36, 87 (2001)
  12. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM, Br. J. Radiol., 79, 248 (2006)
  13. Peppas NA, Bures P, Leobandung W, Ichikawa H, Eur. J. Pharm. Biopharm., 50, 27 (2000)
  14. Lee S, Kwon I, Park K, Adv. Drug Deliv. Rev., 65, 17 (2013)
  15. Langer R, Peppas NA, AIChE J., 49(12), 2990 (2003)
  16. Samah NHA, Heard CM, Int. J. Pharm., 453, 630 (2013)
  17. Maya S, Sarmento B, Nair A, Rejinold NS, Nair SV, Jayakumar R, Curr. Pharm. Design, 19, 7203 (2013)
  18. Tahara Y, Kosuge S, Sawada S, Sasaki Y, Akiyoshi K, React. Funct. Polym., 73(7), 958 (2013)
  19. Bryant SJ, Anseth KS, J. Biomed. Mater. Res., 59, 63 (2002)
  20. Kim YH, Chung M, Kim B, Korea-Aust. Rheol. J., 26(4), 401 (2014)