Polymer(Korea), Vol.44, No.6, 784-789, November, 2020
한 용기 내 중합반응에 의한 금 나노입자를 함유한 PEG 수화젤 입자의 합성
Preparation of Poly(ethylene glycol) Hydrogel Particles Containing Gold Nanoparticles by In Situ Polymerization
E-mail:
초록
금 입자와 고분자 입자를 결합한 유무기 복합재료를 컴퓨터단층촬영(CT)의 조영제로 사용하기 위한 첫 단계로, PEG 수화젤 입자 내부에 금 나노입자를 고농도로 탑재하여 최종적으로 합성된 Au-PEG 수화젤 입자의 CT세기를 향상시킬 수 있는 합성방법을 개발하였다. 다양한 방법을 이용하여 Au-PEG 수화젤 입자를 제조한 결과, PEG 수화젤 입자를 중합하는 동안 금 나노입자를 수화젤 내부에 탑재하는 한 용기내 중합(in situ 법)을 사용할 경우, 가장 높은 CT세기를 보이고 탑재된 금 입자가 수화젤로부터 방출되지 않는 안정적인 Au-PEG 수화젤 입자를 합성할 수 있었다. In situ법을 사용하여 입자를 제조할 경우, 투입한 금 전구체의 농도가 증가할수록 그리고 중합과정에서 1차 중합시간이 증가할수록, 합성된 Au-PEG 수화젤 입자의 CT세기가 증가하였으며, 비이온성 계면활성제를 분산안정제로 사용할 경우, 가장 높은 CT세기를 가지는 입자를 제조할 수 있었다.
As the first step to use an organic/inorganic composite combining gold nanoparticles (AuNPs) and polymer particles as a contrast agent for computed tomography (CT), PEG hydrogel particles containing AuNPs, Au-PEG hydrogel particles, were prepared and the synthetic conditions were established to improve the CT intensity of the Au-PEG hydrogel particles. Au-PEG hydrogel particles that had the highest CT intensity were obtained and the encapsulated AuNPs were not released from the hydrogel particles when Au-PEG hydrogel particles were synthesized by in situ polymerization with which the AuNPs were loaded in the PEG hydrogel particles during the polymerization. The CT intensity of the Au-PEG hydrogel particles increased, as the concentration of the loaded AuNPs and the 1st polymerization time of the polymerization process increased. In addition, when the non-ionic surfactant was used as a dispersion stabilizer, Au-PEG hydrogel particles showed good dispersibility and the highest CT density.
Keywords:polymer hydrogels;gold nanoparticles;organic/inorganic composites;in situ polymerization;computed tomography (CT) contrast agents
- Mahouche-Chergui S, Guerrouache M, Carbonnier B, Chehimi MM, Colloids Surf. A: Physicochem. Eng. Asp., 439, 43 (2013)
- Xu S, Zhang J, Kumacheva E, Compos. Interfaces, 10, 405 (2003)
- Farah AA, Bravo-Vasquez JP, Alvarez-Puebla RA, Cho J, Fenniri H, Small, 5, 1283 (2009)
- Wang C, Flynn NT, Langer R, Adv. Mater., 16(13), 1074 (2004)
- Kemmerer SR, Mortele KJ, Ros PR, Radiol. Clin. North Am., 36, 247 (1998)
- Leander P, Hoglund P, Borseth A, Kloster Y, Berg A, Eur. Radiol., 11, 698 (2001)
- Baron RL, Am. J. Roentgenol., 163, 323 (1994)
- Dai X, Schlemmer HP, Schmidt B, Hoh K, Xu K, Ganten TM, Ganten MK, Eur. J. Radiol., 82, 327 (2013)
- Shin H, Cho Y, Lee K, Lee C, Choi BW, Kim B, J. Liposome Res., 24, 124 (2014)
- Zheng J, Liu J, Dunne M, Jaffray DA, Allen C, Pharm. Res., 24, 1193 (2007)
- Katayama H, Spinazzi A, Fouillet X, Kirchin MA, Taroni P, Davies A, Invest. Radiol., 36, 87 (2001)
- Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM, Br. J. Radiol., 79, 248 (2006)
- Peppas NA, Bures P, Leobandung W, Ichikawa H, Eur. J. Pharm. Biopharm., 50, 27 (2000)
- Lee S, Kwon I, Park K, Adv. Drug Deliv. Rev., 65, 17 (2013)
- Langer R, Peppas NA, AIChE J., 49(12), 2990 (2003)
- Samah NHA, Heard CM, Int. J. Pharm., 453, 630 (2013)
- Maya S, Sarmento B, Nair A, Rejinold NS, Nair SV, Jayakumar R, Curr. Pharm. Design, 19, 7203 (2013)
- Tahara Y, Kosuge S, Sawada S, Sasaki Y, Akiyoshi K, React. Funct. Polym., 73(7), 958 (2013)
- Bryant SJ, Anseth KS, J. Biomed. Mater. Res., 59, 63 (2002)
- Kim YH, Chung M, Kim B, Korea-Aust. Rheol. J., 26(4), 401 (2014)