화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.6, 861-867, November, 2020
폴리프로필렌(PP)/셀룰로오스 나노섬유(CNF) 복합체의 CNF 분산특성에 대한 PP 분지화 및 말레인산 무수물 그래프트 영향
Effect of Polypropylene Branching and Maleic Anhydride Graft on CNF Dispersity of Polypropylene (PP)/Cellulose Nanofiber (CNF) Composite
E-mail:
초록
Polypropylene(PP)/cellulose nanofiber(CNF) 복합체의 CNF 분산성 개선을 위해 PP를 분지화 및 말레인산 무수물(maleic anhydride, MAH) 그래프트화를 동시에 진행하여 복합체를 제조하였다. PP 분지화와 MAH 그래프트가 CNF 분산성 및 물성에 미치는 영향을 고찰하기 위해 1) 장쇄분지화 PP(LCB-PP)와 MAH 그래프트 PP(PP-g-MAH)를 각각 제조한 후 용융 블렌드하는 방법, 2) 분지제, MAH 및 dicumyl peroxide(DCP)를 반응압출 단계에서 동시에 투입하여 제조한 분지화 그래프트 PP(LCB-PP-g-MAH)를 사용 방법으로 구분하였으며, 분지제로는 divinylbenzene (DVB)을 사용하였다. PP/CNF 복합체는 이축압축기를 이용하여 CNF 함량을 10 wt%로 고정하여 제조하였다. 인장강도와 굴곡강도 개선에 LCB-PP와 PP-g-MAH의 용융 혼합보다는 동시 반응 압출한 분지화 그래프트 PP가 효율적임을 확인하였다.
In order to improve the CNF dispersion of the polypropylene (PP)/cellulose nanofiber (CNF) composite, PP was branched and maleic anhydride (MAH) grafted simultaneously, and the composites were prepared. To examine the effect of PP branching and MAH grafting on CNF dispersion and physical properties, 1) melt blending after preparing long chain branched PP (LCB-PP) and MAH-grafted PP (PP-g-MAH), and 2) using branched graft PP prepared by simultaneously adding a branching agent, MAH, and dicumyl peroxide (DCP) in a reactive extrusion step were employed as a method. Divinylbenzene (DVB) was used as the branching agent. PP/CNF composites were prepared by fixing the CNF content to 10 wt% using a twin-screw extruder. It was confirmed that the co-reactive branched graft PP (LCB-PP-g-MAH) is more efficient than the melt blend of LCB-PP and PP-g-MAH to improve the tensile strength and flexural strength
  1. Paul DR, Robeson LM, Polymer, 49(15), 3187 (2008)
  2. Roy N, Sengupta R, Bhowmick AK, Prog. Polym. Sci., 37, 781 (2012)
  3. Kotal M, Bhowmick AK, Prog. Polym. Sci, 51, 127 (2015)
  4. Turbak AF, Snyder FW, Sandberg KR, J. Appl. Polym. Sci.: Appl. Polym. Symp.;(United States), 37, 815 (1983).
  5. Herrick FW, Casebier RL, Hamilton JK, J. Appl. Polym. Sci.: Appl. Polym. Symp.;(United States), 37, 797 (1983).
  6. Tonoli GHD, Teixeira EM, Correa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC, Carbohydr. Polym., 89, 80 (2012)
  7. Chen Q, Garcia RP, Munoz J, de Larraya UP, Garmendia N, Yao Q, Boccaccini AR, ACS Appl. Mater. Interfaces, 7, 24715 (2015)
  8. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A, Angew. Chem.-Int. Edit., 50, 5438 (2011)
  9. Dufresne A, Mater. Today, 16, 200 (2013)
  10. Siro I, Plackett D, Cellulose, 17, 459 (2010)
  11. Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K, Cellulose, 17, 299 (2010)
  12. Robles E, Urruzola I, Labidi J, Serrano L, Ind. Crop. Prod., 71, 44 (2015)
  13. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A, Gandini A, J. Appl. Polym. Sci., 98(3), 974 (2005)
  14. Iwamoto S, Yamamoto S, Lee SH, Endo T, Compos. Part A: Appl. Sci. Manufact., 59, 26 (2014)
  15. Bahar E, Ucar N, Onen A, Wang YJ, Oksuz M, Ayaz O, Ucar M, Demir A, J. Appl. Polym. Sci., 125(4), 2882 (2012)
  16. Shi D, Yang JH, Yao ZH, Wang Y, Huang HL, Jing W, Yin JH, Costa G, Polymer, 42(13), 5549 (2001)
  17. Guldogan Y, Egri S, Rzaev ZMO, Piskin E, J. Appl. Polym. Sci., 92(6), 3675 (2004)
  18. Tian JH, Yu W, Zhou CX, J. Appl. Polym. Sci., 104(6), 3592 (2007)
  19. Nam GJ, Yoo JH, Lee JW, J. Appl. Polym. Sci., 96(5), 1793 (2005)
  20. Tian J, Yu W, Zhou C, J. Macromol. Sci., Part B, 45, 969 (2006)
  21. Malmberg A, Gabriel C, Steffl T, Munstedt H, Lofgren B, Macromolecules, 35(3), 1038 (2002)
  22. Vega JF, Santamaria A, Munoz-Escalona A, Lafuente P, Macromolecules, 31(11), 3639 (1998)
  23. Han CD, J. Appl. Polym. Sci., 35, 167 (1988)
  24. Su FH, Huang HX, J. Appl. Polym. Sci., 113(4), 2126 (2009)
  25. Tian JH, Yu W, Zhou CX, Polymer, 47(23), 7962 (2006)
  26. Lohse DJ, Milner ST, Fetters LJ, Xenidou M, Hadjichristidis N, Mendelson RA, Garcia-Franco CA, Lyon MK, Macromolecules, 35(8), 3066 (2002)