화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.6, 881-890, November, 2020
내부에 폴리아크릴로니트릴 도전섬유가 배열되어 있는 폴리(L-락트산) 복합 필름의 제조와 전자파 차폐 특성
Preparation and Electromagnetic Interference Shielding Properties of Poly(L-lactic acid) Composite Film with Electrically Conductive Polyacrylonitrile Fibers Aligned Inside
E-mail:
초록
전자파 차폐에 사용되는 복합재료에서 도전성 물질이 고분자 매트릭스 내에 균일하게 분산 또는 배향되지 못하여 차폐성능이 떨어지는 문제점을 해결하기 위한 연구를 진행하였다. 이를 위하여 용융되지 않고 분해온도가 높은 도전성 폴리아크릴로니트릴(c-PAN) 섬유와 생분해성을 가지면서 융점이 낮은 폴리(L-락트산)(PLA) 섬유를 몇 가지 비율로 혼합하고 길이 방향으로 정렬된 혼섬 슬라이버를 제조한 후, 이를 200 °C에서 용융압착시켜 c-PAN 섬유/PLA 복합체 필름으로 제조하고 이들의 전자파 차폐성을 포함한 몇 가지 특성들을 분석하였다. c-PAN 섬유는 복합체 필름 내에서 기계 방향으로 배열되어 존재하며, c-PAN 섬유의 함량이 증가할수록 복합체의 전자파 차폐효율 뿐만 아니라 열전도도가 증가하였다. c-PAN 섬유 함량이 20%이면서 두께가 1.6 mm인 복합체 필름은 전 주파수 영역에서 20 dB 이상의 차폐효율을 보이면서, 1000 MHz 주파수에서는 30 dB 정도의 우수한 차폐효율을 나타내었다.
A study was conducted to solve the problem of low shielding performance of composite materials used for electromagnetic interference shielding because conductive materials are not uniformly dispersed or oriented in the polymer matrix. For this, electrically conductive polyacrylonitrile (c-PAN) fibers that do not melt and have a high decomposition temperature and poly(L-lactic acid) (PLA) fibers having a low melting point and showing biodegradability were mixed in several ratios and aligned in the longitudinal direction to make blended slivers. c-PAN fiber/PLA composite films were prepared then by melt-pressing the blended slivers at 200 °C, and their several properties including electromagnetic interference shielding property were analyzed. The c-PAN fibers were aligned in the machine direction in the composite film. The electromagnetic interference shielding efficiency as well as the thermal conductivity of the composite films increased as the content of c-PAN fibers increased. The composite film with a c-PAN fiber content of 20% and a thickness of 1.6 mm exhibited a shielding efficiency of 20 dB or more in the entire frequency range, and an excellent shielding efficiency of about 30 dB at 1000 MHz frequency.
  1. Park KY, Lee SE, Lee WJ, Kim CG, Han JH, Compos. Res., 19, 1 (2006)
  2. Tzeng SS, Chang FY, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 302, 258 (2001)
  3. Huang JJ, Tian CA, Wang J, Liu JF, Li Y, Liu YH, Chen ZM, Appl. Surf. Sci., 458, 734 (2018)
  4. Mu SP, Xie HY, Wang W, Yu D, Appl. Surf. Sci., 353, 608 (2015)
  5. Charbonnier M, Romand M, Int. J. Adhes. Adhes., 23, 277 (2003)
  6. Guo B, Zhao SZ, Han GY, Zhang LW, Electrochim. Acta, 53(16), 5174 (2008)
  7. Roan ML, Chen YH, Liao HH, Huang CY, Chen KN, Yeh JT, Macromol. Symp., 286, 116 (2009)
  8. Lee SH, Kim JY, Koo CM, Kim WN, Macromol. Res., 25(9), 936 (2017)
  9. Park DH, Lee YK, Park SS, Lee CS, Kim SH, Kim WN, Macromol. Res., 21(8), 905 (2013)
  10. Gaal PS, Thermitus MA, Stroe D, J. Therm. Anal. Calorim., 78, 185 (2004)
  11. Soyaslan D, Comlekci S, Goktepe O, J. Text. Inst., 101, 890 (2010)
  12. Cheng KB, Ramakrishna S, Lee KC, J. Thermoplast. Compos. Mater., 13, 378 (2000)
  13. Lee BH, Kim HS, Lee SN, Kim HJ, Dorganc JR, Compos. Sci. Technol., 69, 2573 (2009)
  14. Rubio-Lopez A, Artero-Guerrero J, Pernas-Sanchez J, Santiuste C, Polym. Test, 59, 127 (2017)
  15. Gu J, Xiao P, Chen P, Zhan GL, Wang H, Dai L, Song L, Huang Y, Zhang J, Chen T, ACS Appl. Mater. Interf., 9, 5968 (2017)
  16. Li Y, Gora A, Anariba F, Baji A, Polym. Compos., 40, 1702 (2019)
  17. http://www.hanilsf.co.kr/business01_4.
  18. Boudenne A, Ibos L, Fois M, Majeste JC, Gehin E, Compos. Pt. A-Appl. Sci. Manuf., 36, 1545 (2005)
  19. Takahashi S, Imai Y, Kan A, Hotta Y, Ogawa H, J. Alloy. Compd., 615, 141 (2014)
  20. Gu J, Guo Y, Yang X, Liang C, Geng W, Tang L, Li N, Zhang Q, Compos. Pt. A-Appl. Sci. Manuf., 95, 267 (2017)
  21. ASTM D257.07, Standard Test Methods for DC Resistance or Conductance of Insulating Materials (2014).
  22. Yim YJ, Seo MK, Kim HY, Park SJ, Polym. Korea, 36(4), 494 (2012)
  23. Santos WN, Polym. Test, 26, 556 (2007)
  24. SantosWN, Mummery P, Wallwork A, Polym. Test, 24, 628 (2005)
  25. Weidenfeller B, Hofer M, Schilling FR, Compos. Pt. A-Appl. Sci. Manuf., 35, 423 (2004)
  26. Naito K, Tanaka Y, Yang JM, Kagawa Y, Carbon, 46, 189 (2008)
  27. Murariu M, Dubois P, Adv. Drug Deliv. Rev., 107, 17 (2016)
  28. Liu Z, Lei Q, Xing S, J. Mater. Res. Technol., 8, 3741 (2019)
  29. Gao H, Qiang T, Mater., 10, 624 (2017)
  30. Han SO, Karevan M, Sim IN, Bhuiyan MA, Jang YH, Ghaffar J, Kalaitzidou K, Int. J. Polym. Sci., 2012, 679252 (2012)
  31. Shimizu RN, Demarquette NR, J. Appl. Polym. Sci., 76(12), 1831 (2000)
  32. Christensen A, Graham S, Appl. Therm. Eng., 29, 364 (2009)
  33. Im SS, Lee SB, Im YM, Choi HK, J. Korean Ind. Eng. Chem., 7(3), 424 (1996)
  34. ASTM D 4935, Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials (2018).
  35. Syafinaz I, Tawakkal MA, Talib RA, Abdan K, Ling CN, Bioresources, 7, 1643 (2012)
  36. Altunok M, Kureli I, Pulat M, Mater. Sci. Appl., 6, 519 (2015)